首页|非视口依赖的抗畸变无参考全景图像质量评价

非视口依赖的抗畸变无参考全景图像质量评价

扫码查看
目的 全景图像质量评价(omnidirectional image quality assessment,OIQA)旨在定量描述全景图像降质情况,对于算法提升和系统优化起着重要的作用。早期的O1QA方法设计思想主要是结合全景图像的几何特性(如两级畸变和语义分布不均匀)和2D-IQA方法,这类方法并未考虑用户的观看行为,因而性能一般;现有的O1QA方法主要通过模拟用户的观看行为,提取观看视口序列;进一步,计算视口序列失真情况,然后融合视口失真得到全景图像的全局质量。然而,观看视口序列预测较为困难,且预测模型的实时性和鲁棒性难以保证。为了解决上述问题,提出一种非视口依赖的抗畸变无参考(no reference,NR)OIQA(NR-OIQA)模型。针对全景图像等距柱状投影(equirect-angular projection,ERP)所带来的规律性几何畸变问题,提出一种可同时处理不规则语义和规律性畸变的新型卷积方法,称为等矩形可变形卷积方法,并基于该卷积方法构建NR-OIQA模型。方法 该模型主要由先验指导的图像块采样(prior-guided patch sampling,PPS)模块、抗畸变特征提取(deformation-unaware feature extraction,DUFE)模块和块内—块间注意力聚集(intra-inter patch attention aggregation,A-EPAA)模块3个部件组成。其中,PPS模块根据先验概率分布从高分辨率的全景图像采样提取相同分辨率的图像块;DUFE模块通过等矩形可变形卷积渐进式地提取输入图像块质量相关特征;A-EPAA模块旨在调整单个图像块内部特征以及各图像块对整体质量评价的影响程度,以提升模型对全景图像质量的评价准确度。结果 在3个公开数据集上将本文模型与其他IQA和O1QA模型进行性能比较,与性能第1的Assessor360相比,参数量减少了 93。7%,计算量减少了 95。4%;与模型规模近似的MC360IQA相比,在CVIQ、OIQA和JUFE数据集上的斯皮尔曼相关系数分别提升了 1。9%、1。7%和4。3%。结论 本文所提出的NR-OIQA模型,充分考虑了全景图像的特点,能够以不依赖视口的方式高效提取具有失真特性的质量特征,对全景图像进行准确质量评价,并具有计算量低的优点。
Viewport-independent and deformation-unaware no-reference omnidirectional image quality assessment
Objective With the rapid development of the virtual reality(VR)industry,the omnidirectional image acts as an important medium of visual representation of VR and may degrade in the procedure of acquisition,transmission,pro-cessing,and storage.Omnidirectional image quality assessment(OIQA)is an evaluation technique that aims to quantita-tively describe the degradation of omnidirectional images and plays a crucial role in algorithm improvement and system opti-mization.Generally,the omnidirectional image has some inherent characteristics,i.e.,geometric deformation in the polar region and semantic information more concentrated on the equatorial region.The viewing behavior can conspicuously affect the perceptual quality of an omnidirectional image.Early OIQA methods that simply fuse this inherent characteristic in 2D-IQA do not consider the significant user viewing behavior,thus obtaining suboptimal performance.Considering the view-port representation that is in line with the user viewing behavior,some deep learning-based OIQA methods have recently achieved promising performance by taking the predicted viewport sequence as the model input and computing the degrada-tion.However,the prediction of the viewport sequence is difficult and viewport extraction needs a series of pixel-wise com-putations,thus leading to a significant computation load and hampering the application in the industry environment.To address the above problems,we proposed a new no-reference OIQA model,which introduces an equirectangular modulated deformable convolution(EquiMdconv)that can deal with the irregular semantics and the regular deformation caused by equirectangular projection simultaneously without the predicted viewport sequence.Method We propose a viewport-independent and deformation-unaware no-reference OIQA model for omnidirectional image quality assessment.Our model is composed of three parts:a prior-guided patch sampling(PPS)module,a deformable-unaware feature extraction(DUFE)module,and an intra-interpatch attention aggregation(A-EPAA)module.The PPS module samples a set of patch images on the basis of prior probability distribution in a slice-based manner to represent the complete image quality informa-tion.DUFE aims to extract the perceptual quality features of the input patch images,considering the irregular semantics and regular deformation in this process.It contains eight blocks,and each block comprises an EquiMconv layer,a 1 × 1 convolutional layer,a batch normalization layer,and a 3 x 3 max pooling layer.The EquiMconv layer employs a modu-lated deformable convolution layer that introduces learnable offset parameters to model distortions in the images more accu-rately.Furthermore,we incorporate fixed offsets based on distortion regularity factors into the deformable convolution's off-set to effectively eliminate the regular deformation.The A-EPAA comprises a convolutional block attention module(CBAM)and a patch attention module(PA).The CBAM assigns weights to each channel to adjust perceptual quality fea-tures in both channel and spatial dimensions.The PA adjusts the contribution weights between patch images for an overall quality assessment.We train the proposed model on the CVIQ,OIQA,and JUFE databases.In the training stage,we split each database into two parts:80%for training and 20%for testing.We sample 10 patch images from each omnidirectional image,and the size of the patch image is set to 224 × 224.All experiments are implemented on a server with an NVIDIA GTX A5000 GPU.Adaptive moment estimation optimizer(Adam)is utilized to optimize our model.We train the model for 300 epochs on the CVIQ and OIQA databases and 20 epochs on the JUFE database;the learning rate is 0.000 1 and the batch size is 16.Result We conduct experiments covering three databases,namely,CVIQ,OIQA,and JUFE.We demon-strate the performance of the proposed model by comparing it with nine viewport-independent models and five viewport-dependent models.To ensure a persuasive comparison result,we select the Pearson linear correlation coefficient and Spear-man's rank correlation coefficient(SRCC)as performance evaluation standards.The results indicate that compared with those of the state-of-the-art viewport-dependent model,i.e.,Assessor360,the parameters of our model are reduced by 93.7%and the floating point operations are reduced by 95.4%.Compared with the MC360IQA,which has a similar model size,the SRCC is increased by 1.9%,1.7%,and 4.3%on the CVIQ,OIQA,and JUFE databases,respectively.Con-clusion Our proposed viewport-independent and deformation-unaware no-reference OIQA model thoroughly considers the characteristics of the omnidirectional image.It can effectively extract quality features and accurately assess the quality of omnidirectional images with limited computational cost.

image quality assessment(IQA)omnidirectional imagedeformable convolutionattention mechanismno referenceviewport

鄢杰斌、谭淄文、吴康诚、刘学林、方玉明

展开 >

江西财经大学计算机与人工智能学院,南昌 330032

图像质量评价(IQA) 全景图像 可变形卷积 注意力机制 无参考 视口

2024

中国图象图形学报
中国科学院遥感应用研究所,中国图象图形学学会 ,北京应用物理与计算数学研究所

中国图象图形学报

CSTPCD北大核心
影响因子:1.111
ISSN:1006-8961
年,卷(期):2024.29(12)