首页|男性运动员睡眠障碍的神经机制探究:基于复杂网络模型

男性运动员睡眠障碍的神经机制探究:基于复杂网络模型

扫码查看
目的:通过使用无目标不加权及目标加权的复杂网络模型方法,分析睡眠障碍运动员睡前神经机能状态与睡眠质量的复杂作用方式,揭示运动员发生睡眠障碍的神经机能状态特征。方法:在睡眠实验室内使用多导睡眠仪监测14名男性睡眠障碍运动员4晚完整睡眠,并在睡前使用便携式脑电仪、超慢波涨落潮技术、Polar H10心率胸带和心境状态量表,分别测试或评估中枢机能状态、脑内神经递质水平、自主神经状态以及情绪状态。基于测试数据分别建立无目标不加权,以及以睡眠质量为目标的加权复杂网络模型。结果:1)无目标不加权的复杂网络模型中,介数中心性结果提示,慌乱、精力和愤怒情绪、α抑制%、去甲肾上腺素(NE)和多巴胺、相邻窦性R-R间期差值大于50 ms所占百分比(PNN50)、平均R-R间隔、平均心率(MHR)和睡眠总时间是此网络的关键影响节点。特征向量中心性分析结果显示,上述指标中除PNN50、NE和MHR外,抑郁、紧张和疲劳情绪与其他指标仍是网络的重要连接节点。2)在以睡眠质量为目标的加权复杂网络模型中,目标介数中心性结果发现,情绪状态在到达睡眠质量指标的最短路径中出现频率最高(48。57%),其次神经递质和睡眠指标频率相同(14。29%),而中枢神经机能状态和自主神经状态出现的频率最低(11。43%)。目标特征向量中心性结果表明,情绪状态成为影响睡眠质量最重要的影响因素,出现频率为82。86%,其次是自主神经状态出现频率为8。57%,而中枢神经机能状态、神经递质和睡眠指标出现频率相同(2。86%)。结论:运动员睡眠障碍的主要表现为总时长短,睡眠期间觉醒时间长导致睡眠效率低。复杂网络模型方法揭示了情绪(主要为消极情绪)是睡眠质量低和睡眠障碍发生的主要影响节点和关键因素,其中愤怒、慌乱情绪与脑内神经递质(5-HT和DA)、中枢疲劳程度相关,中枢疲劳程度和自主神经协调性与精力状态相关。
Exploring Neural Mechanisms Underlying Sleep Disorders in Male Athletes:A Complex Network Model Approach
Objective:This study employs a complex network model approach,incorporating non-targeted unweighted and targeted weighted techniques,to investigate the intricate interac-tions between pre-sleep neural functioning and sleep quality in male athletes with sleep disor-ders.The objective is to uncover specific neural functional characteristics associated with sleep disorders in athletes.Methods:Fourteen highly trained athletes with sleep disorders were moni-tored over 4 nights using polysomnography.Before sleep,their central nervous system status,neurotransmitter levels in the brain,autonomic nervous system status and mode state were as-sessed using separate methods,including portable electroencephalograph,supra-slow encephalo-fluctuogram technology,Polar H10 heart rate monitors and the profile of mood state question-naire.Based on test data,a complex network model with non-targeted unweighted characteris-tics,as well as a weighted complex network model targeting sleep quality,has been established.Results:In the non-targeted unweighted network model,the betweenness centrality results indi-cate that emotions such as panic,energy and anger,α%inhibitory rate,norepinephrine(NE),do-pamine,the proportion of NN50 divided by the total number of NN(R-R)intervals(PNN50),mean R-R interval,mean heart rate(MHR)and the total time of sleep are key influencing nodes of this network.According to the results of eigenvector centrality analysis,in addition to PNN50,NE and MHR in the above indicators,depression,tension,fatigue and other indicators remain important connection nodes within the network.In the weighted complex network mod-els targeting sleep quality,the results of the targeted betweenness centrality analysis find that the mood state indicator has the highest frequency in the shortest path to reach the sleep quality indicator(48.57%).In turn,neurotransmitters and sleep indicators,each with the same frequen-cy(14.29%),are found.The central nervous system status and autonomic nervous system status exhibit the lowest frequency(11.43%).In the results of targeted eigenvector centrality,mood state emerges as the most important influencing factor on sleep quality,with a frequency of 82.86%.Following this is the autonomic nervous system status,with a frequency of 8.57%.Subsequently,the central nervous system status,neurotransmitters and sleep indicators each share the same frequency(2.86%).Conclusions:The primary manifestations of sleep disorders in athletes include a shortened total sleep duration and prolonged wake time during sleep,result-ing in low sleep efficiency.Utilizing complex network modeling methods,the research has re-vealed that emotions,particularly negative emotions,serve as the primary influential nodes and key factors in the occurrence of poor sleep quality and sleep disorders.Among them,feelings of anger and anxiety are associated with brain neurotransmitters(5-HT and DA)and the level of central fatigue,while energy levels are associated with central fatigue and autonomic nervous system coordination.

sleep qualitymood statenervous systemcomplex network model

李秦陇、车开萱、Charles J. Steward、赵丽、周越

展开 >

北京体育大学,北京 100084

考文垂大学,英国 考文垂 CV15FB

睡眠质量 情绪状态 神经系统 复杂网络模型

国家重点研发计划重点专项

2018YFF0300801

2024

中国体育科技
国家体育总局体育信息研究所

中国体育科技

CSTPCDCSSCICHSSCD北大核心
影响因子:1.31
ISSN:1002-9826
年,卷(期):2024.60(2)
  • 63