首页|Solving the relativistic Hartree-Bogoliubov equation with the finite-difference method
Solving the relativistic Hartree-Bogoliubov equation with the finite-difference method
扫码查看
点击上方二维码区域,可以放大扫码查看
原文链接
NETL
NSTL
万方数据
The relativistic Hartree-Bogoliubov(RHB)theory is a powerful tool for describing exotic nuclei near drip lines.The key technique is to solve the RHB equation in the coordinate space to obtain the quasi-particle states.In this paper,we solve the RHB equation with the Woods-Saxon-type mean-field and Delta-type pairing-field poten-tials by using the finite-difference method(FDM).We inevitably obtain spurious states when using the common symmetric central difference formula(CDF)to construct the Hamiltonian matrix,which is similar to the problem resulting from solving the Dirac equation with the same method.This problem is solved by using the asymmetric difference formula(ADF).In addition,we show that a large enough box is necessary to describe the continuum quasi-particle states.The canonical states obtained by diagonalizing the density matrix constructed by the quasi-particle states are not particularly sensitive to the box size.Part of the asymptotic wave functions can be improved by applying the ADF in the FDM compared to the shooting method with the same box boundary condition.