中国物理B(英文版)2024,Vol.33Issue(3) :121-127.DOI:10.1088/1674-1056/ad23d8

Image segmentation of exfoliated two-dimensional materials by generative adversarial network-based data augmentation

程晓昱 解晨雪 刘宇伦 白瑞雪 肖南海 任琰博 张喜林 马惠 蒋崇云
中国物理B(英文版)2024,Vol.33Issue(3) :121-127.DOI:10.1088/1674-1056/ad23d8

Image segmentation of exfoliated two-dimensional materials by generative adversarial network-based data augmentation

程晓昱 1解晨雪 1刘宇伦 1白瑞雪 1肖南海 1任琰博 1张喜林 1马惠 2蒋崇云1
扫码查看

作者信息

  • 1. College of Electronic Information and Optical Engineering,Nankai University,Tianjin 300350,China
  • 2. School of Physical Science and Technology,Tiangong University,Tianjin 300387,China
  • 折叠

Abstract

Mechanically cleaved two-dimensional materials are random in size and thickness.Recognizing atomically thin flakes by human experts is inefficient and unsuitable for scalable production.Deep learning algorithms have been adopted as an alternative,nevertheless a major challenge is a lack of sufficient actual training images.Here we report the generation of synthetic two-dimensional materials images using StyleGAN3 to complement the dataset.DeepLabv3Plus network is trained with the synthetic images which reduces overfitting and improves recognition accuracy to over 90%.A semi-supervisory technique for labeling images is introduced to reduce manual efforts.The sharper edges recognized by this method facilitate material stacking with precise edge alignment,which benefits exploring novel properties of layered-material devices that crucially depend on the interlayer twist-angle.This feasible and efficient method allows for the rapid and high-quality manufacturing of atomically thin materials and devices.

Key words

two-dimensional materials/deep learning/data augmentation/generating adversarial networks

引用本文复制引用

基金项目

国家重点研发计划(2022YFB2803900)

国家自然科学基金(61974075)

国家自然科学基金(61704121)

天津市自然科学基金(22JCZDJC00460)

天津市自然科学基金(19JCQNJC00700)

天津市教委项目(2019KJ028)

中央高校基本科研业务费专项(22JCZDJC00460)

Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin and the Engineering Research Center of Thin Fi()

出版年

2024
中国物理B(英文版)
中国物理学会和中国科学院物理研究所

中国物理B(英文版)

CSTPCDEI
影响因子:0.995
ISSN:1674-1056
参考文献量34
段落导航相关论文