首页|Quantum geometric tensor and the topological characterization of the extended Su-Schrieffer-Heeger model

Quantum geometric tensor and the topological characterization of the extended Su-Schrieffer-Heeger model

扫码查看
We investigate the quantum metric and topological Euler number in a cyclically modulated Su-Schrieffer-Heeger(SSH)model with long-range hopping terms.By computing the quantum geometry tensor,we derive exact expressions for the quantum metric and Berry curvature of the energy band electrons,and we obtain the phase diagram of the model marked by the first Chern number.Furthermore,we also obtain the topological Euler number of the energy band based on the Gauss-Bonnet theorem on the topological characterization of the closed Bloch states manifold in the first Brillouin zone.However,some regions where the Berry curvature is identically zero in the first Brillouin zone result in the degeneracy of the quantum metric,which leads to ill-defined non-integer topological Euler numbers.Nevertheless,the non-integer"Euler number"provides valuable insights and an upper bound for the absolute values of the Chern numbers.

quantum geometric tensortopological Euler numberChern numberBerry curvaturequantum metricSu-Schrieffer-Heeger(SSH)model

曾相龙、赖文喜、魏祎雯、马余全

展开 >

School of Science,Beijing Information Science and Technology University,Beijing 100192,China

北京市自然科学基金Qinxin Talents Program of BISTUResearch and Development Program of Beijing Municipal Education Commission国家自然科学基金Research fund of BISTU

1232026QXTCP C201711KM202011232017123041902022XJJ32

2024

中国物理B(英文版)
中国物理学会和中国科学院物理研究所

中国物理B(英文版)

CSTPCDEI
影响因子:0.995
ISSN:1674-1056
年,卷(期):2024.33(3)
  • 73