首页|High-order Bragg forward scattering and frequency shift of low-frequency underwater acoustic field by moving rough sea surface

High-order Bragg forward scattering and frequency shift of low-frequency underwater acoustic field by moving rough sea surface

扫码查看
Acoustic scattering modulation caused by an undulating sea surface on the space-time dimension seriously affects underwater detection and target recognition.Herein,underwater acoustic scattering modulation from a moving rough sea surface is studied based on integral equation and parabolic equation.And with the principles of grating and constructive interference,the mechanism of this acoustic scattering modulation is explained.The periodicity of the interference of moving rough sea surface will lead to the interference of the scattering field at a series of discrete angles,which will form comb-like and frequency-shift characteristics on the intensity and the frequency spectrum of the acoustic scattering field,respectively,which is a high-order Bragg scattering phenomenon.Unlike the conventional Doppler effect,the frequency shifts of the Bragg scattering phenomenon are multiples of the undulating sea surface frequency and are independent of the incident sound wave frequency.Therefore,even if a low-frequency underwater acoustic field is incident,it will produce obvious frequency shifts.Moreover,under the action of ideal sinusoidal waves,swells,fully grown wind waves,unsteady wind waves,or mixed waves,different moving rough sea surfaces create different acoustic scattering processes and possess different frequency shift characteristics.For the swell wave,which tends to be a single harmonic wave,the moving rough sea surface produces more obvious high-order scattering and frequency shifts.The same phenomena are observed on the sea surface under fully grown wind waves,however,the frequency shift slightly offsets the multiple peak frequencies of the wind wave spectrum.Comparing with the swell and fully-grown wind waves,the acoustic scattering and frequency shift are not obvious for the sea surface under unsteady wind waves.

high-order Bragg scatteringfrequency shiftlow-frequency acoustic fieldmoving rough sea sur-face

莫亚枭、张朝金、鹿力成、孙启航、马力

展开 >

Key Laboratory of Underwater Acoustic Environment,Institute of Acoustics,Chinese Academy of Sciences(CAS),Beijing 100190,China

China State Shipbuilding Corporation Systems Engineering Research Institute,Beijing 100094,China

Little Bird Co.,Ltd,Beijing 100089,China

IACAS Young Elite Researcher ProjectRising Star Foundation of Integrated Research Center for Islands and Reefs Sciences,CASKey Laboratory Foundation of Acoustic Science and Technology

QNYC201703ZDRW-XH-2021-2-042021-JCJQ-LB-066-08

2024

中国物理B(英文版)
中国物理学会和中国科学院物理研究所

中国物理B(英文版)

CSTPCDEI
影响因子:0.995
ISSN:1674-1056
年,卷(期):2024.33(3)
  • 21