中国物理B(英文版)2024,Vol.33Issue(3) :526-535.DOI:10.1088/1674-1056/ad1485

Wave nature of Rosensweig instability

李柳 李德才 戚志强 王璐 张志力
中国物理B(英文版)2024,Vol.33Issue(3) :526-535.DOI:10.1088/1674-1056/ad1485

Wave nature of Rosensweig instability

李柳 1李德才 2戚志强 1王璐 1张志力1
扫码查看

作者信息

  • 1. School of Mechanical,Electronic,and Control Engineering,Beijing Jiaotong University,Beijing 100044,China;Beijing Key Laboratory of Flow and Heat Transfer of Phase Changing in Micro and Small Scale,Beijing 100044,China
  • 2. School of Mechanical,Electronic,and Control Engineering,Beijing Jiaotong University,Beijing 100044,China;State Key Laboratory of Tribology,Tsinghua University,Beijing 100084,China
  • 折叠

Abstract

The explicit analytical solution of Rosensweig instability spikes'shapes obtained by Navier-Stokes(NS)equation in diverse magnetic field H vertical to the flat free surface of ferrofluids are systematically studied experimentally and theoretically.After carefully analyzing and solving the NS equation in elliptic form,the force balanced surface equations of spikes in Rosensweig instability are expressed as cosine wave in perturbated magnetic field and hyperbolic tangent in large magnetic field,whose results both reveal the wave-like nature of Rosensweig instability.The results of hyperbolic tangent form are perfectly fitted to the experimental results in this paper,which indicates that the analytical solution is basically correct.Using the forementioned theoretical results,the total energy of the spike distribution pattern is calculated.By analyzing the energy components under different magnetic field intensities H,the hexagon-square transition of Rosensweig instability is systematically discussed and explained in an explicit way.

Key words

ferrofluids/Rosensweig instability/hexagon-square transition

引用本文复制引用

基金项目

国家自然科学基金(51735006)

国家自然科学基金(51927810)

国家自然科学基金(U1837206)

北京市自然科学基金(3182013)

出版年

2024
中国物理B(英文版)
中国物理学会和中国科学院物理研究所

中国物理B(英文版)

CSTPCDEI
影响因子:0.995
ISSN:1674-1056
参考文献量23
段落导航相关论文