Abstract
This paper deals with wave propagation and power coupling in blue-core helicon plasma driven by various antennas and frequencies.It is found that compared to non-blue-core mode,for blue-core mode,the wave can propagate in the core region,and it decays sharply outside the core.The power absorption is lower and steeper in radius for blue-core mode.Regarding the effects of antenna geometry for blue-core mode,it shows that half helix antenna yields the strongest wave field and power absorption,while loop antenna yields the lowest.Moreover,near axis,for antennas with m=+1,the wave field increases with axial distance.In the core region,the wave number approaches to a saturation value at much lower frequency for non-blue-core mode compared to blue-core mode.The total loading resistance is much lower for blue-core mode.These findings are valuable to understanding the physics of blue-core helicon discharge and optimizing the experimental performance of blue-core helicon plasma sources for applications such as space propulsion and material treatment.
基金项目
国家自然科学基金(92271113)
中央高校基本科研业务费专项(2022CDJQY-003)
Chongqing Entrepreneurship and Innovation Support Program for Overseas Returnees(CX2022004)
Fund from Shanghai Engineering Research Center of Space Engine(17DZ2280800)