中国物理B(英文版)2024,Vol.33Issue(3) :641-652.DOI:10.1088/1674-1056/aceeea

Exploring reservoir computing:Implementation via double stochastic nanowire networks

唐健峰 夏磊 李广隶 付军 段书凯 王丽丹
中国物理B(英文版)2024,Vol.33Issue(3) :641-652.DOI:10.1088/1674-1056/aceeea

Exploring reservoir computing:Implementation via double stochastic nanowire networks

唐健峰 1夏磊 2李广隶 2付军 2段书凯 3王丽丹4
扫码查看

作者信息

  • 1. College of Artificial Intelligence,Southwest University,Chongqing 400715,China;State Key Laboratory of Intelligent Vehicle Safety Technology,Chongqing 400715,China
  • 2. College of Artificial Intelligence,Southwest University,Chongqing 400715,China
  • 3. College of Artificial Intelligence,Southwest University,Chongqing 400715,China;National & Local Joint Engineering Laboratory of Intelligent Transmission and Control Technology,Chongqing 400715,China;Chongqing Brain Science Collaborative Innovation Center,Chongqing 400715,China
  • 4. College of Artificial Intelligence,Southwest University,Chongqing 400715,China;Brain-inspired Computing & Intelligent Control of Chongqing Key Laboratory,Chongqing 400715,China;National & Local Joint Engineering Laboratory of Intelligent Transmission and Control Technology,Chongqing 400715,China;Key Laboratory of Luminescence Analysis and Molecular Sensing,Ministry of Education,Southwest University,Chongqing 400715,China;State Key Laboratory of Intelligent Vehicle Safety Technology,Chongqing 400715,China
  • 折叠

Abstract

Neuromorphic computing,inspired by the human brain,uses memristor devices for complex tasks.Recent studies show that self-organizing random nanowires can implement neuromorphic information processing,enabling data analysis.This paper presents a model based on these nanowire networks,with an improved conductance variation profile.We sug-gest using these networks for temporal information processing via a reservoir computing scheme and propose an efficient data encoding method using voltage pulses.The nanowire network layer generates dynamic behaviors for pulse voltages,allowing time series prediction analysis.Our experiment uses a double stochastic nanowire network architecture for pro-cessing multiple input signals,outperforming traditional reservoir computing in terms of fewer nodes,enriched dynamics and improved prediction accuracy.Experimental results confirm the high accuracy of this architecture on multiple real-time series datasets,making neuromorphic nanowire networks promising for physical implementation of reservoir computing.

Key words

double-layer stochastic(DS)nanowire network architecture/neuromorphic computation/nanowire network/reservoir computing/time series prediction

引用本文复制引用

基金项目

国家自然科学基金(U20A20227)

国家自然科学基金(62076208)

国家自然科学基金(62076207)

Chongqing Talent Plan"Contract System"Project(CQYC20210302257)

National Key Laboratory of Smart Vehicle Safety Technology Open Fund Project(IVSTSKL-202309)

Chongqing Technology Innovation and Application Development Special Major Project(CSTB2023TIAD-STX0020)

College of Artificial Intelligence,Southwest University,and State Key Laboratory of Intelligent Vehicle Safety Technology()

出版年

2024
中国物理B(英文版)
中国物理学会和中国科学院物理研究所

中国物理B(英文版)

CSTPCDEI
影响因子:0.995
ISSN:1674-1056
参考文献量46
段落导航相关论文