中国物理B(英文版)2024,Vol.33Issue(5) :665-673.DOI:10.1088/1674-1056/ad20db

A novel complex-high-order graph convolutional network paradigm:ChyGCN

郑和翔 苗书宇 顾长贵
中国物理B(英文版)2024,Vol.33Issue(5) :665-673.DOI:10.1088/1674-1056/ad20db

A novel complex-high-order graph convolutional network paradigm:ChyGCN

郑和翔 1苗书宇 2顾长贵1
扫码查看

作者信息

  • 1. Business School,University of Shanghai for Science and Technology,Shanghai 200093,China
  • 2. Ant Group,Shanghai 200000,China
  • 折叠

Abstract

In recent years,there has been a growing interest in graph convolutional networks(GCN).However,existing GCN and variants are predominantly based on simple graph or hypergraph structures,which restricts their ability to handle complex data correlations in practical applications.These limitations stem from the difficulty in establishing multiple hierarchies and acquiring adaptive weights for each of them.To address this issue,this paper introduces the latest concept of complex hypergraphs and constructs a versatile high-order multi-level data correlation model.This model is realized by establishing a three-tier structure of complexes-hypergraphs-vertices.Specifically,we start by establishing hyperedge clusters on a foundational network,utilizing a second-order hypergraph structure to depict potential correlations.For this second-order structure,truncation methods are used to assess and generate a three-layer composite structure.During the construction of the composite structure,an adaptive learning strategy is implemented to merge correlations across different levels.We evaluate this model on several popular datasets and compare it with recent state-of-the-art methods.The comprehensive assessment results demonstrate that the proposed model surpasses the existing methods,particularly in modeling implicit data correlations(the classification accuracy of nodes on five public datasets Cora,Citeseer,Pubmed,Github Web ML,and Facebook are 86.1±0.33,79.2±0.35,83.1±0.46,83.8±0.23,and 80.1±0.37,respectively).This indicates that our approach possesses advantages in handling datasets with implicit multi-level structures.

Key words

raph convolutional network/complex modeling/complex hypergraph

引用本文复制引用

基金项目

国家自然科学基金(12275179)

国家自然科学基金(11875042)

上海市自然科学基金(21ZR1443900)

出版年

2024
中国物理B(英文版)
中国物理学会和中国科学院物理研究所

中国物理B(英文版)

CSTPCDEI
影响因子:0.995
ISSN:1674-1056
参考文献量23
段落导航相关论文