中国物理B(英文版)2024,Vol.33Issue(6) :567-572.DOI:10.1088/1674-1056/ad39d6

One memristor-one electrolyte-gated transistor-based high energy-efficient dropout neuronal units

李亚霖 时凯璐 朱一新 方晓 崔航源 万青 万昌锦
中国物理B(英文版)2024,Vol.33Issue(6) :567-572.DOI:10.1088/1674-1056/ad39d6

One memristor-one electrolyte-gated transistor-based high energy-efficient dropout neuronal units

李亚霖 1时凯璐 1朱一新 1方晓 1崔航源 1万青 2万昌锦1
扫码查看

作者信息

  • 1. School of Electronic Science & Engineering,and Collaborative Innovation Center of Advanced Microstructures,Nanjing University,Nanjing 210023,China
  • 2. Yongjiang Laboratory(Y-LAB),Ningbo 315202,China
  • 折叠

Abstract

Artificial neural networks(ANN)have been extensively researched due to their significant energy-saving benefits.Hardware implementations of ANN with dropout function would be able to avoid the overfitting problem.This letter reports a dropout neuronal unit(1R1T-DNU)based on one memristor-one electrolyte-gated transistor with an ultralow energy consumption of 25 pJ/spike.A dropout neural network is constructed based on such a device and has been verified by MNIST dataset,demonstrating high recognition accuracies(≥ 90%)within a large range of dropout probabilities up to 40%.The running time can be reduced by increasing dropout probability without a significant loss in accuracy.Our results indicate the great potential of introducing such IRIT-DNUs in full-hardware neural networks to enhance energy efficiency and to solve the overfitting problem.

Key words

dropout neuronal unit/synaptic transistors/memristor/artificial neural network

引用本文复制引用

基金项目

国家重点研发计划(2021YFA1202600)

国家重点研发计划(2023YFE0208600)

国家自然科学基金(62174082)

国家自然科学基金(92364106)

国家自然科学基金(61921005)

国家自然科学基金(92364204)

国家自然科学基金(62074075)

出版年

2024
中国物理B(英文版)
中国物理学会和中国科学院物理研究所

中国物理B(英文版)

CSTPCDEI
影响因子:0.995
ISSN:1674-1056
参考文献量25
段落导航相关论文