中国物理B(英文版)2024,Vol.33Issue(7) :223-231.DOI:10.1088/1674-1056/ad3dc6

A wealth distribution model with a non-Maxwellian collision kernel

孟俊 周霞 赖绍永
中国物理B(英文版)2024,Vol.33Issue(7) :223-231.DOI:10.1088/1674-1056/ad3dc6

A wealth distribution model with a non-Maxwellian collision kernel

孟俊 1周霞 2赖绍永3
扫码查看

作者信息

  • 1. College of Mathematics and Statistics,Kashi University,Kashi 844006,China
  • 2. College of Mathematics and Physics,Mianyang Teacher's College,Mianyang 621000,China
  • 3. School of Mathematics,Southwestern University of Finance and Economics,Chengdu 611130,China
  • 折叠

Abstract

A non-Maxwellian collision kernel is employed to study the evolution of wealth distribution in a multi-agent society.The collision kernel divides agents into two different groups under certain conditions.Applying the kinetic theory of rarefied gases,we construct a two-group kinetic model for the evolution of wealth distribution.Under the continuous trading limit,the Fokker-Planck equation is derived and its steady-state solution is obtained.For the non-Maxwellian collision kernel,we find a suitable redistribution operator to match the taxation.Our results illustrate that taxation and redistribution have the property to change the Pareto index.

Key words

kinetic theory/non-Maxwellian collision kernel/wealth distribution/Pareto index

引用本文复制引用

基金项目

National Natural Science Foundation of China(11471263)

Natural Science Foundation of Xinjiang Uygur Autonomous Region,China(2021D01B09)

Initial Research Foundation of Kashi University(022024076)

Mathematics and Finance Research Centre Funding Project()

Dazhou Social Science Federation(SCMF202305)

出版年

2024
中国物理B(英文版)
中国物理学会和中国科学院物理研究所

中国物理B(英文版)

CSTPCDEI
影响因子:0.995
ISSN:1674-1056
参考文献量22
段落导航相关论文