中国物理B(英文版)2024,Vol.33Issue(10) :362-372.DOI:10.1088/1674-1056/ad6250

Experimental studies of H2/Ar plasma in a cylindrical inductive discharge with an expansion region

李世博 邢思雨 高飞 王友年
中国物理B(英文版)2024,Vol.33Issue(10) :362-372.DOI:10.1088/1674-1056/ad6250

Experimental studies of H2/Ar plasma in a cylindrical inductive discharge with an expansion region

李世博 1邢思雨 1高飞 1王友年1
扫码查看

作者信息

  • 1. Key Laboratory of Materials Modification by Laser,Ion,and Electron Beams(Ministry of Education),School of Physics,Dalian University of Technology,Dalian 116024,China
  • 折叠

Abstract

The electrical parameters of H2/Ar plasma in a cylindrical inductive discharge with an expansion region are investi-gated by a Langmuir probe,where Ar fractions range from 0%to 100%.The influence of gas composition and pressure on electron density,the effective electron temperature and the electron energy probability functions(EEPFs)at different spatial positions are present.In driver region,with the introduction of a small amount of Ar at 0.3 Pa,there is a rapid increase in electron density accompanied by a decrease in the effective electron temperature.Additionally,the shape of the EEPF transitions from a three-temperature distribution to a bi-Maxwellian distribution due to an increase in electron-electron col-lision.However,this phenomenon resulting from the changes in gas composition vanishes at 5 Pa due to the prior depletion of energetic electrons caused by the increase in pressure during hydrogen discharge.The EEPFs for the total energy in expansion region is coincident to these in the driver region at 0.3 Pa,as do the patterns of electron density variation between these two regions for differing Ar fractions.At 5 Pa,as the discharge transitions from H2 to Ar,the EEPFs evolved from a bi-Maxwellian distribution with pronounced low energy electrons to a Maxwellian distribution in expansion region.This evolve may be attributed to a reduction in molecular vibrational excitation reactions of electrons during transport and the transition from localized electron dynamics in hydrogen discharge to non-localized electron dynamics in argon discharge.In order to validate the experimental results,we use the COMSOL simulation software to calculate electrical parameters under the same conditions.The evolution and spatial distribution of the electrical parameters of the simulation results agree well with the trend of the experimental results.

Key words

inductively coupled plasma/transmission and distribution/energy distribution functions

引用本文复制引用

基金项目

National Natural Science Foundation of China(11935005)

National Natural Science Foundation of China(12075049)

National Key Research and Development Program of China(2017YFE0300106)

出版年

2024
中国物理B(英文版)
中国物理学会和中国科学院物理研究所

中国物理B(英文版)

CSTPCDEI
影响因子:0.995
ISSN:1674-1056
段落导航相关论文