Abstract
In distributed quantum computing(DQC),quantum hardware design mainly focuses on providing as many as possible high-quality inter-chip connections.Meanwhile,quantum software tries its best to reduce the required number of remote quantum gates between chips.However,this"hardware first,software follows"methodology may not fully exploit the potential of DQC.Inspired by classical software-hardware co-design,this paper explores the design space of application-specific DQC architectures.More specifically,we propose AutoArch,an automated quantum chip network(QCN)structure design tool.With qubits grouping followed by a customized QCN design,AutoArch can generate a near-optimal DQC architecture suitable for target quantum algorithms.Experimental results show that the DQC architecture generated by AutoArch can outperform other general QCN architectures when executing target quantum algorithms.