首页|按病种分值付费辅助系数CCI指数实现方案研究

按病种分值付费辅助系数CCI指数实现方案研究

扫码查看
目的:以脑梗死为例探讨CCI指数构建方案,为政策调整提供参考.方法:以Lasso回归筛选合并症构建模型,用K-means聚类进行病例严重程度归类,以1+标准化回归系数和求出CCI指数.结果:经分析找到5个关键变量:肺的其他疾患、非胰岛素依赖型糖尿病伴有酮症酸中毒、非传染性病因的全身炎症反应综合征伴有器官衰竭、急性十二指肠溃疡伴出血、慢性阻塞性肺病伴急性下呼吸道感染,其CCI指数为1、1、1.026、1.034、1.101.模拟测算显示,应用CCI指数后亏损金额较前缩减.结论:基于Lasso回归、K-means聚类的CCI指数构建方案合理有效.
A Preliminary Study on the Construction of the CCI Index of the Policy Auxiliary Coefficient for the Payment of Diag-nosis-Intervention Packet
Objective:To explore a solution for the construction of the CCI index with an example of cerebral infarction to provide a guide for adjusting the policy of Diagnosis-Intervention Packet.Methods:Lasso regression was used to screen for comorbidities to construct the model,K-means clustering was used for case severity categorization.CCI indices were calculated as one plus the sum of standardized regression coefficients.Results:According to the analysis,five key variables were found,including other disorders of the lungs,non-insulin-dependent diabetes mellitus with ketoacidosis,systemic inflammatory response syndrome of non-infectious etiology with organ failure,acute duodenal ulcer with bleeding,and chronic obstructive pulmonary disease with acute lower respiratory tract in-fection,with CCI indices of 1,1,1.026,1.034,and 1.101.Simulated calculation's result showed a decrease in medical insurance pay-ment losses after applying CCI indices.Conclusion:The CCI index construction scheme based on Lasso regression and K-means clus-tering is reasonable and effective.

Diagnosis-Intervention PacketCCI IndexLasso RegressionK-means clustering

窦冠麟、杨华才、王泽彬、詹俊琳

展开 >

广州医科大学附属第二医院医保科 广州 510260

按病种分值付费 CCI指数 Lasso回归 K-means聚类

广东省医学科学技术研究基金

A2022319

2024

中国卫生经济
中国卫生经济学会,卫生部卫生经济研究所

中国卫生经济

CSTPCDCHSSCD北大核心
影响因子:1.524
ISSN:1003-0743
年,卷(期):2024.43(2)
  • 12