首页|脓毒症相关急性肾损伤死亡预测模型的构建

脓毒症相关急性肾损伤死亡预测模型的构建

扫码查看
目的 利用国际大型数据库电子重症监护病房合作研究数据库(eICU-CRD)数据,建立脓毒症相关性急性肾损伤(SA-AKI)患者30 d死亡预测模型列线图,并进行预测效能验证.方法 采用eICU-CRD中的数据进行回顾性队列研究.从eICU-CRD数据库中筛选SA-AKI患者数据,包括人口统计学特征、既往病史、SA-AKI类型、改善全球肾脏病预后组织(KDIGO)-AKI分期、病情严重程度评分、生命体征、实验室指标及治疗措施;以入院时间为观察起点,死亡为结局事件,随访时间为30 d.比较不同30 d预后患者的相关变量;采用单因素Logistic回归分析和多因素Logistic回归向前似然比分析筛选SA-AKI患者30 d死亡危险因素,并构建死亡预测模型列线图;采用受试者工作特征曲线(ROC曲线)、校准曲线和Hosmer-Lemeshow检验对模型的预测效能进行验证.结果 最终共201例SA-AKI患者数据纳入分析,其中30 d存活51例,死亡150例,病死率为74.63%.与存活组比较,死亡组患者年龄更大[岁:68(60,78)比59(52,69),P<0.01],体质量、短暂性SA-AKI比例、血小板计数(PLT)、血糖更低[体质量(kg):79(65,95)比91(71,127),短暂性SA-AKI比例:61.33%(92/150)比 82.35%(42/51),PLT(× 109/L):207(116,313)比 260(176,338),血糖(mmol/L):5.5(4.4,7.1)比6.4(5.1,7.6),均P<0.05],持续性SA-AKI比例、序贯器官衰竭评分(SOFA)、血乳酸(Lac)、总胆红素(TBil)更高[持续性 SA-AKI 比例:38.67%(58/150)比 17.65%(9/51),SOFA 评分(分):7(5,22)比 5(2,7),Lac(mmol/L):0.4(0.2,0.7)比 0.3(0.2,0.4),TBil(μmol/L):41.0(17.1,51.3)比 18.8(17.1,34.2),均P<0.05].单因素 Logistic 回归分析显示,年龄[优势比(OR)=1.035,95%可信区间(95%CI)为1.013~1.058,P=0.002]、体质量(OR=0.987,95%CI 为 0.977~0.996,P=0.007)、持续性 SA-AKI(OR=2.942,95%CI 为 1.333~6.491,P=0.008)、SOFA 评分(OR=1.073,95%CI 为 1.020~1.129,P=0.006)、PLT(OR=0.998,95%CI 为 0.996~1.000,P=0.034)、Lac(OR=1.142,95%CI为 1.009~1.292,P=0.035)、TBil(OR=1.422,95%CI为 1.070~1.890,P=0.015)与 SA-AKI 患者 30 d死亡风险相关;多因素Logistic回归向前似然比分析显示,年龄(OR=1.051,95%CI为1.023~1.079,P=0.000)、体质量(OR=0.985,95%CI 为 0.974~0.995,P=0.005)、心血管疾病(OR=9.055,95%CI 为 1.037~79.084,P=0.046)、持续性SA-AKI(OR=3.020,95%CI为 1.258~7.249,P=0.013)、SOFA评分(OR=1.076,95%CI为 1.013~1.143,P=0.017)、PLT(OR=0.997,95%CI为 0.995~1.000,P=0.030)是 SA-AKI 患者 30 d 死亡独立危险因素.根据以上危险因素构建SA-AKI患者30 d死亡预测模型列线图;ROC曲线分析显示,该模型ROC曲线下面积(AUC)为0.798(95%CI为0.722~0.873),敏感度为86.7%,特异度为62.7%;校准曲线图显示,拟合曲线与标准曲线接近,说明预测概率与实际概率接近,提示模型预测效能较好;Hosmer-Lemeshow检验显示,x2=6.393,df=8,P=0.603>0.05,提示该模型能够很好地拟合观察数据;通过模型预测准确率判断模型拟合质量,结果显示,该模型的预测准确率为95.3%,模型整体预测准确率为81.6%,说明模型拟合情况较好.结论 基于SA-AKI患者30 d死亡危险因素可以成功构建死亡预测模型,该模型具有较高的准确率、敏感度、可信度和一定的特异度,有助于早期筛选出高死亡风险患者,并采取更加积极的救治方案.
Construction of a predictive model of death for sepsis-associated acute kidney injury
Objective To establish a predictive model nomogram for 30-day death in patients with sepsis-associated acute kidney injury(SA-AKI)by using the data from the large international database,the Electronic Intensive Care Unit-Collaborative Research Database(eICU-CRD),and to validate its predictive performance.Methods A retrospective cohort study was conducted using data from the eICU-CRD.Data of SA-AKI patients were screened from the eICU-CRD database,including demographic characteristics,medical history,SA-AKI type,Kidney Disease:Improving Global Outcomes(KDIGO)-AKI staging,severity of illness scores,vital signs,laboratory indicators,and treatment measures;with admission time as the observation start point,death as the outcome event,and a follow-up time of 30 days.Relevant variables of patients with different 30-day prognoses were compared.Univariate Logistic regression analysis and multivariate Logistic regression forward likelihood ratio analysis were used to screen for risk factors associated with 30-day death in SA-AKI patients,and a predictive model nomogram was constructed.Receiver operator characteristic curve(ROC curve),calibration curve,and Hosmer-Lemeshow test were used to validate the predictive performance of the model.Results A total of 201 SA-AKI patients'data were finally enrolled,among which 51 survived for 30 days and 150 died,with a mortality of 74.63%.Compared with the survival group,patients in the death group were older[years old:68(60,78)vs.59(52,69),P<0.01],had lower body weight,proportion of transient SA-AKI,platelet count(PLT)and blood glucose[body weight(kg):79(65,95)vs.91(71,127),proportion of transient SA-AKI:61.33%(92/150)vs.82.35%(42/51),PLT(× 109/L):207(116,313)vs.260(176,338),blood glucose(mmol/L):5.5(4.4,7.1)vs.6.4(5.1,7.6),all P<0.05]and higher proportion of persistent SA-AKI,sequential organ failure assessment(SOFA)score,lactic acid(Lac),and total bilirubin[TBil;proportion of persistent SA-AKI:38.67%(58/150)vs.17.65%(9/51),SOFA score:7(5,22)vs.5(2,7),Lac(mmol/L):0.4(0.2,0.7)vs.0.3(0.2,0.4),TBil(μmol/L):41.0(17.1,51.3)vs.18.8(17.1,34.2),all P<0.05].Univariate Logistic regression analysis showed that age[odds ratio(OR)=1.035,95%confidence interval(95%CI)was 1.013-1.058,P=0.002],body weight(OR=0.987.95%CI was 0.977-0.996,P=0.007),persistent SA-AKI(OR=2.942,95%CI was 1.333-6.491,P=0.008),SOFA score(OR=1.073,95%CI was 1.020-1.129,P=0.006),PLT(OR=0.998,95%CI was 0.996-1.000,P=0.034),Lac(OR=1.142,95%CI was 1.009-1.292,P=0.035),TBil(OR=1.422,95%CI was 1.070-1.890,P=0.015)were associated with 30-day death risk in SA-AKI patients.Multivariate Logistic regression forward likelihood ratio analysis showed that age(OR=1.051,95%CI was 1.023-1.079,P=0.000),body weight(OR=0.985,95%CI was 0.974-0.995,P=0.005),cardiovascular disease(OR=9.055,95%CI was 1.037-79.084,P=0.046),persistent SA-AKI(OR=3.020,95%CI was 1.258-7.249,P=0.013),SOFA score(OR=1.076,95%CI was 1.013-1.143,P=0.017),and PLT(OR=0.997,95%CI was 0.995-1.000,P=0.030)were independent risk factors for 30-day death in SA-AKI patients.Based on the above risk factors,a predictive model nomogram for 30-day death in SA-AKI patients was constructed.ROC curve analysis showed that the area under the ROG curve(AUC)of the model was 0.798(95%CI was 0.722-0.873),with a sensitivity of 86.7%and a specificity of 62.7%.Calibration curve showed that the fitted curve was close to the standard line,indicating that the predicted probability was close to the actual probability,suggesting good predictive performance of the model.Hosmer-Lemeshow test showed x2=6.393,df=8,P=0.603>0.05,suggesting that the model could fit the observed data well.The quality of model fitting was judged by the accuracy of model prediction.The results showed that the prediction accuracy rate of the model was 95.3%,and the overall prediction accuracy rate of the model was 81.6%,indicating good model fitting.Conclusion A predictive model for 30-day death in SA-AKI patients based on risk factors can be successfully constructed,and the model has high accuracy,sensitivity,reliability,and certain specificity,which can help to early identify high-risk patients for death and adopt more proactive treatment strategies.

SepsisPersistent acute kidney injuryMultivariable Logistic regression analysisPrognostic factorDeath prediction modelNomogram

李晓寒、朱长举、兰超、刘奇

展开 >

郑州大学第一附属医院急诊重症监护病房,河南郑州 450052

河南省急救与创伤医学重点实验室,郑州 450052

脓毒症 持续性急性肾损伤 多因素Logistic回归分析 预后因素 死亡预测模型 列线图

国家临床重点专科建设项目

2018-292

2024

中华危重病急救医学
中华医学会

中华危重病急救医学

CSTPCD北大核心
影响因子:3.049
ISSN:2095-4352
年,卷(期):2024.36(4)