首页|脓毒症相关性急性肾损伤患者3个月死亡风险列线图预测模型的建立与评价

脓毒症相关性急性肾损伤患者3个月死亡风险列线图预测模型的建立与评价

扫码查看
目的 建立并评价脓毒症相关性急性肾损伤(S-AKI)患者 3 个月死亡风险的列线图预测模型。方法 基于美国重症监护医学信息数据库Ⅳ(MIMIC-Ⅳ),收集 2008 至 2021 年S-AKI患者的临床数据。初步纳入 58 个相关预测因素,以 3 个月内全因死亡为结局事件。按 7∶3 比例将数据分为训练集和验证集。在训练集中采用单因素Logistic回归分析初步筛选变量,运用多重共线性分析、Lasso回归和随机森林算法并结合临床应用价值进行变量选择,建立多因素Logistic回归模型并利用列线图进行可视化表达。在验证集中进行内部验证,评价模型预测价值;绘制受试者工作特征曲线(ROC曲线)计算曲线下面积(AUC)评价列线图模型及牛津急性疾病严重度评分(OASIS)、序贯器官衰竭评分(SOFA)、全身炎症反应综合征评分(SIRS)的区分度;校准曲线评价校准度;决策曲线分析(DCA)评估不同阈值概率下的净效益。结果 基于确诊后 3 个月时的生存状况将患者分为存活组 7768 例(68。54%),死亡组 3566 例(31。46%)。在训练集中通过多重筛选,最终纳入 7 个变量,即Logistic器官功能障碍评分(LODS)、Charlson合并症指数、尿量、国际标准化比值(INR)、呼吸支持方式、血尿素氮和年龄,并纳入列线图模型。在验证集中进行内部验证,ROC曲线分析显示,列线图模型的AUC为0。81[95%可信区间(95%CI)为0。80~0。82],大于OASIS评分的0。70(95%CI为0。69~0。71),远大于SOFA评分的0。57(95%CI为 0。56~0。58)和SIRS评分的 0。56(95%CI为 0。55~0。57),具有较好区分度。校准曲线显示列线图模型校准度优于OASIS、SOFA、SIRS评分。DCA曲线显示列线图模型在不同阈概率情况下的临床净收益均好于OASIS、SOFA、SIRS评分。结论 基于MIMIC-Ⅳ临床大数据建立的一个包含 7 项变量的S-AKI患者 3 个月死亡风险预测列线图模型具有很好的区分度和校准度,为评估S-AKI患者预后提供了有效的新工具。
Development and validation of a nomogram for predicting 3-month mortality risk in patients with sepsis-associated acute kidney injury
Objective To develop and evaluate a nomogram prediction model for the 3-month mortality risk of patients with sepsis-associated acute kidney injury(S-AKI).Methods Based on the American Medical Information Mart for Intensive Care-Ⅳ(MIMIC-Ⅳ),clinical data of S-AKI patients from 2008 to 2021 were collected.Initially,58 relevant predictive factors were included,with all-cause mortality within 3 months as the outcome event.The data were divided into training and testing sets at a 7∶3 ratio.In the training set,univariate Logistic regression analysis was used for preliminary variable screening.Multicollinearity analysis,Lasso regression,and random forest algorithm were employed for variable selection,combined with the clinical application value of variables,to establish a multivariable Logistic regression model,visualized using a nomogram.In the testing set,the predictive value of the model was evaluated through internal validation.The receiver operator characteristic curve(ROC curve)was drawn,and the area under the curve(AUC)was calculated to evaluate the discrimination of nomogram model and Oxford acute severity of illness score(OASIS),sequential organ failure assessment(SOFA),and systemic inflammatory response syndrome score(SIRS).The calibration curve was used to evaluate the calibration,and decision curve analysis(DCA)was performed to assess the net benefit at different probability thresholds.Results Based on the survival status at 3 months after diagnosis,patients were divided into 7768(68.54%)survivors and 3566(31.46%)death.In the training set,after multiple screenings,7 variables were finally included in the nomogram model:Logistic organ dysfunction system(LODS),Charlson comorbidity index,urine output,international normalized ratio(INR),respiratory support mode,blood urea nitrogen,and age.Internal validation in the testing set showed that the AUC of nomogram model was 0.81[95%confidence interval(95%CI)was 0.80-0.82],higher than the OASIS score's 0.70(95%CI was 0.69-0.71)and significantly higher than the SOFA score's 0.57(95%CIwas 0.56-0.58)and SIRS score's 0.56(95%CIwas 0.55-0.57),indicating good discrimination.The calibration curve demonstrated that the nomogram model's calibration was better than the OASIS,SOFA,and SIRS scores.The DCA curve suggested that the nomogram model's clinical net benefit was better than the OASIS,SOFA,and SIRS scores at different probability thresholds.Conclusions A nomogram prediction model for the 3-month mortality risk of S-AKI patients,based on clinical big data from MIMIC-Ⅳ and including seven variables,demonstrates good discriminative ability and calibration,providing an effective new tool for assessing the prognosis of S-AKI patients.

Sepsis-associated acute kidney injuryDeath riskNomogram model

岳筱、李志芳、王蕾、黄丽、赵致慷、王盼盼、王硕、龚喜云、张澍、王正斌

展开 >

郑州大学第一附属医院急诊医学部,河南郑州 450052

脓毒症相关性急性肾损伤 死亡风险 列线图模型

河南省高等学校重点科研项目

23A310030

2024

中华危重病急救医学
中华医学会

中华危重病急救医学

CSTPCD北大核心
影响因子:3.049
ISSN:2095-4352
年,卷(期):2024.36(5)
  • 22