首页|重症监护病房脓毒症相关性急性肾损伤风险列线图的构建与验证

重症监护病房脓毒症相关性急性肾损伤风险列线图的构建与验证

扫码查看
目的 构建并验证预测重症监护病房(ICU)脓毒症相关性急性肾损伤(SA-AKI)风险的列线图模型。方法 回顾纳入2017年1月至2022年12月入住解放军联勤保障部队第九四○医院重症医学科的成人脓毒症患者,提取人群特征、入院24 h内的诊疗数据及临床结局。以7:3比例随机分为训练集和验证集。依据第28届急性病质量倡议工作组(ADQI 28)共识报告,以血清肌酐为参数,以脓毒症诊断7 d内发生AKI为结局对数据进行分析。使用Lasso回归分析及单因素、多因素Logistic回归分析筛选出预测变量并构建SA-AKI风险预测模型。通过Hosmer-Lemeshow检验、受试者工作特征曲线(ROC曲线)、决策曲线分析(DCA)及临床影响曲线(CIC)对模型进行评价。结果 247例脓毒症患者纳入研究,184例发生SA-AKI(74。49%),其中训练集和验证集SA-AKI患者分别为130例(75。58%)和54例(72。00%)。经Lasso回归分析及单因素、多因素Logistic回归分析后筛选出4个与SA-AKI发生相关的独立预测因子,分别为降钙素原(PCT)、凝血酶原活动度(PTA)、血小板分布宽度(PDW)、尿酸(UA),其优势比(OR)及95%可信区间(95%CI)分别为1。03(1。01~1。05)、0。97(0。55~0。99)、2。68(1。21~5。96)、1。01(1。00~1。01),均 P<0。05。以上述 4 个独立预测因子绘制列线图,构建预测模型。在训练集和验证集,预测模型的ROC曲线下面积(AUC)分别为0。869(95%CI为0。870~0。930)和0。710(95%CI为0。588~0。832);Hosmer-Lemeshow检验P值分别为0。384和0。294。在训练集中,模型最佳截断值为0。760时,敏感度为77。5%,特异度为88。1%。DCA曲线和CIC曲线亦证明该模型具有良好的临床效用。结论 基于ICU脓毒症患者24 h内临床指标构建的列线图模型可用于预测脓毒症患者7 d内发生AKI的风险,可能有助于临床医师识别SA-AKI高风险患者,为早期制定个性化诊疗措施提供一定的临床参考。
Construction and validation of a risk nomogram for sepsis-associated acute kidney injury in intensive care unit
Objective To construct and validate a nomogram model for predicting sepsis-associated acute kidney injury(SA-AKI)risk in intensive care unit(ICU)patients.Methods A retrospective cohort study was conducted.Adult sepsis patients admitted to the department of ICU of the 940th Hospital of Joint Logistic Support Force of PLA from January 2017 to December 2022 were enrolled.Demographic characteristics,clinical data within 24 hours after admission to ICU diagnosis,and clinical outcomes were collected.Patients were divided into training set and validation set according to a 7:3 ratio.According to the consensus report of the 28th Acute Disease Quality Initiative Working Group(ADQI 28),the data were analyzed with serum creatinine as the parameter and AKI occurrence 7 days after sepsis diagnosis as the outcome.Lasso regression analysis and univariate and multivariate Logistic regression analysis were performed to construct the nomogram prediction model for SA-AKI.The discrimination and accuracy of the model were evaluated by the Hosmer-Lemeshow test,receiver operator characteristic curve(ROC curve),decision curve analysis(DCA),and clinical impact curve(CIC).Results A total of 247 sepsis patients were enrolled,184 patients developed SA-AKI(74.49%).The number of AKI patients in the training and validation sets were 130(75.58%)and 54(72.00%),respectively.After Lasso regression analysis and univariate and multivariate Logistic regression analysis,four independent predictive factors related to the occurrence of SA-AKI were selected,namely procalcitonin(PCT),prothrombin activity(PTA),platelet distribution width(PDW),and uric acid(UA)were significantly associated with the onset of SA-AKI,the odds ratio(OR)and 95%confidence interval(95%CI)was 1.03(1.01-1.05),0.97(0.55-0.99),2.68(1.21-5.96),1.01(1.00-1.01),all P<0.05,respectively.A nomogram model was constructed using the above four variables.ROC curve analysis showed that the area under the curve(AUC)was 0.869(95%CI was 0.870-0.930)in the training set and 0.710(95%CI was 0.588-0.832)in the validation set.The P-values of the Hosmer-Lemeshow test were 0.384 and 0.294,respectively.In the training set,with an optimal cut-off value of 0.760,a sensitivity of 77.5%and specificity of 88.1%were achieved.Both DC A and CIC plots demonstrated the model's good clinical utility.Conclusion A nomogram model based on clinical indicators of sepsis patients admitted to the ICU within 24 hours could be used to predict the risk of SA-AKI,which would be beneficial for early identification and treatment on SA-AKI.

SepsisAcute kidney injuryLasso regressionNomogramPrediction model

张江明、齐敏君、马璐妹、张凯帅、刘东、刘冬梅

展开 >

甘肃中医药大学第一临床医学院,甘肃兰州 730000

解放军联勤保障部队第九四○医院重症医学科,甘肃兰州 730050

西北民族大学临床医学院,甘肃兰州 730030

脓毒症 急性肾损伤 Lasso回归 列线图 预测模型

甘肃省自然科学基金甘肃省兰州市科技计划项目

21JR11RA0052023-ZD-180

2024

中华危重病急救医学
中华医学会

中华危重病急救医学

CSTPCD北大核心
影响因子:3.049
ISSN:2095-4352
年,卷(期):2024.36(8)