首页|基于电子舌分析建立西瓜品质特性的预测模型

基于电子舌分析建立西瓜品质特性的预测模型

扫码查看
为了探索电子舌技术快速检测西瓜内部品质的方法,以L600西瓜为试验材料,利用电子舌技术对200个西瓜的味觉成分进行检测,用传统检测法测定可溶性固形物、可滴定酸、水分、维生素C和总酚含量,糖酸比及pH,采用偏最小二乘法、随机森林、支持向量机和K-近邻算法建立品质的预测模型.结果表明,在生长过程中,西瓜的可溶性固形物含量、糖酸比、维生素C含量和总酚含量呈升高趋势,pH呈先升高后下降的变化趋势,可滴定酸和水分含量呈逐渐下降趋势.在模型预测结果中,西瓜可溶性固形物含量、糖酸比、pH和水分含量等指标的模型预测效果优于可滴定酸、维生素C和总酚含量.随机森林算法对西瓜可溶性固形物含量、可滴定酸含量、糖酸比和水分含量的预测Rp2分别为0.884、0.798、0.891和0.875,分别比偏最小二乘法提高了 16.9%、19.1%、21.6%和13.6%;偏最小二乘法对pH的预测Rp2为0.881,比支持向量机算法提高了 31.7%;K-近邻算法对维生素C和总酚含量的预测Rp2为0.731和0.753,分别比随机森林算法提高了 1.67%和24.5%.以上结果表明应用电子舌技术预测西瓜的内部品质是可行的.
Models establishment of watermelon qualities based on electronic tongue analysis
In order to explore the E-tongue technology for rapid detection of internal quality of watermelon,the taste com-ponents of 200 watermelons were examined using the E-tongue technology with L600 watermelon as the test material,sol-uble solids,titratable acid,moisture,vitamin C and total phenol content,sugar-acid ratio and pH were determined by tradi-tional detection methods,and partial least squares,random forest,support vector machine and K-nearest neighbour algo-rithms were used to establish quality prediction model.The results showed that soluble solids content,sugar-acid ratio,vi-tamin C content and total phenol content of watermelon tended to increase,pH tended to increase and then decrease,and titratable acid and water content tended to decrease during the growth process.In the model prediction results,the model prediction of the qualities of watermelon soluble solids content,sugar-acid ratio,pH and moisture content were better than titratable acid,vitamin C and total phenol content.The Rp2 of the random forest algorithm for the prediction of watermelon soluble solids content,titratable acid content,sugar-acid ratio and moisture content were 0.884,0.798,0.891 and 0.875,which were 16.9%,19.1%,21.6%and 13.6%higher than those of the partial least square algorithm,respectively;and the RP2 of the partial least square algorithm for pH was 0.881,which was 31.7%higher than that of the support vector ma-chine algorithm;and the K-nearest neighbour algorithm predicted vitamin C and total phenol content with Rp2 of 0.731 and 0.753,which were 1.67%and 24.5%higher than the random forest algorithm,respectively.The results indicated that it is feasible to apply the electronic tongue technique to predict the internal quality of watermelon.

WatermelonElectronic tongueQuality prediction

李闪闪、温雪珊、闫博宇、吕莹果、张超

展开 >

河南工业大学粮油食品学院 郑州 450001

北京市农林科学院农产品加工与食品营养研究所 北京 100097

果蔬农产品保鲜与加工北京市重点实验室 北京 100097

农业农村部蔬菜产后处理重点实验室 北京 100097

展开 >

西瓜 电子舌 品质预测

现代农业产业技术体系建设项目国家自然科学基金北京市农林科学院协同创新中心项目

CARS-2532172237KJCX20240402

2024

中国瓜菜
中国农业科学院郑州果树研究所

中国瓜菜

北大核心
影响因子:0.452
ISSN:1673-2871
年,卷(期):2024.37(5)
  • 42