首页|主成分分析在动物科学的应用研究进展

主成分分析在动物科学的应用研究进展

扫码查看
主成分分析(PCA)采取降维思想,同时保持数据对方差贡献最大的特征,在畜牧生产上用于研究影响性状的变量,既简化变量个数,又获取足量信息,降低课题研究的复杂性.在全基因组关联分析(GWAS)中,PCA可用于校正群体分层,降低群体分层对关联结果的假阳性,通过PCA图可以看出研究群体是否有分层现象.本文主要对PCA的原理、分析软件以及在畜牧生产和GWAS中的应用加以综述.
Research Progress on Principal Component Analysis in Animal Science
Principal component analysis (PCA) takes the idea of dimensionality reduction and also maintains the characteristics of the largest contribution data to the difference.In livestock production,PCA is used to study variables of traits and expected to simplify the number of variables as well as obtain sufficient information to reduce the complexity of research.In genome-wide association analysis (GWAS),PCA can be used to correct population stratification and reduce the false positive results of population stratification for association results.The PCA diagram can be shown whether the study population is stratified.In this paper,the principle of PCA,analysis software and its application in livestock production and GWAS are reviewed.

Principal component analysisPopulation stratificationDimensionality reductionFalse positiveGWAS

宋志芳、解佑志、芦春莲、李赛、曹洪战

展开 >

河北农业大学动物科技学院,河北保定071000

河北正农牧业有限公司,河北辛集052360

主成分分析 群体分层 降维 假阳性 GWAS

河北省科技计划项目

15226301D

2017

中国畜牧杂志
中国畜牧兽医学会

中国畜牧杂志

CSTPCD北大核心
影响因子:0.704
ISSN:0258-7033
年,卷(期):2017.53(11)
  • 6
  • 13