首页|脑卒中患者健康行为潜类别及其预测因素

脑卒中患者健康行为潜类别及其预测因素

扫码查看
目的 探讨脑卒中患者健康行为的潜类别,并分析不同类别的预测因素.方法 采用整群随机抽样法,于2022年9月采用一般情况调查表、改良版Rankin量表(modified Rankin scale,mRS)、脑卒中健康知识问卷(stroke prevention knowledge questionnaire,SPKQ)、脑卒中健康行为问卷(health behavior scale for stroke patients,HBS-SP)以及脑卒中健康信念量表(short form-health belief model scale,SF-HBMS)对1 186名脑卒中患者进行横断面调查.采用Mplus 8.3软件对脑卒中患者健康行为进行潜类别分析(latent class analysis,LCA),并采用SPSS 27.0软件进行无序多分类Logistic回归分析脑卒中患者健康行为各潜类别的预测因素.结果 脑卒中患者健康行为可分为三个潜类别:健康行为较低-健康责任缺失组(66.9%,n=794)、健康行为中等-依从性欠佳组(11.9%,n=141)和健康行为良好-运动锻炼不足组(21.2%,n=251).以健康行为良好-运动锻炼不足组为参照,较短受教育时间(B=-0.589,OR=0.555,P=0.036)、出血性卒中(B=0.082,OR=1.086,P<0.001)、较少并发症(B=-0.022,OR=0.978,P=0.026)、较高 mRS 得分(B=0.046,OR=1.047,P=0.004)、较低 SPKQ 得分(B=-0.055,OR=0.947,P=0.016)、较低 SF-HBMS 得分(B=-0.085,OR=0.919,P<0.001)更易进入健康行为中等-依从性欠佳组;而较短受教育时间(B=-0.026,OR=0.974,P=0.003)、农村(B=0.800,OR=2.225,P=0.004)、较少并发症(B=-0.056,OR=0.945,P<0.001)、较低 SPKQ 得分(B=-0.101,OR=0.904,P<0.001)、较低 SF-HBMS 得分(B=-0.071,OR=0.931,P<0.001)则更易进入健康行为较低-健康责任缺失组.结论 脑卒中患者健康行为具有三个潜类别,应根据不同类别特点开展针对性干预,以提高其健康行为水平.
Analysis of latent classes and predictive factors of health behavior among stroke patients
Objective To explore the latent classes of health behavior and explore the predictive factors among stroke patients.Methods A total of 1 250 participants were recruited using cluster random sampling in September 2022.The general information,the modified Rankin scale(mRS),stroke prevention knowledge questionnaire(SPKQ),health behavior scale for stroke patients(HBS-SP),and short form-health belief model scale(SF-HBMS)were administered in the cross-sectional survey.Mplus 8.3 software was used to conduct a latent class analysis(LCA)on the health behavior of stroke patients,and SPSS 27.0 soft-ware was used to carry out multinomial Logistic regression to analyze the predictive factors of different latent classes of health behavior of stroke patients.Results The health behavior of stroke patients obtained three latent classes:low health behaviors-lack of health responsibility group(66.9%,n=794),moderate health behaviors-poor compliance group(11.9%,n=141),and good health behaviors-insufficient exercise group(21.2%,n=251).Compared with good health behaviors-insufficient exercise group,stroke patients with shorter duration education time(B=-0.589,OR=0.555,P=0.036),hemorrhagic stroke(B=0.082,OR=1.086,P<0.001),fewer comorbidities(B=-0.022,OR=0.978,P=0.026),higher mRS score(B=-0.046,OR=1.047,P=0.004),lower SPKQ score(B=-0.055,OR=0.947,P=0.016),and lower SF-HBMS score(B=-0.085,OR=0.919,P<0.001)were more likely to be included in moderate health be-haviors-poor compliance group.However,stroke patients with shorter duration education time(B=-0.026,OR=0.974,P=0.003),rural areas dwelling(B=0.800,OR=2.225,P=0.004),fewer comorbidities(B=-0.056,OR=0.945,P<0.001),lower SPKQ score(B=-0.101,OR=0.904,P<0.001),and lower SF-HBMS score(B=-0.071,OR=0.931,P<0.001)were more likely to be included in low health behav-iors-lack of health responsibility group.Conclusion The health behavior of stroke patients has three latent classes.A targeted intervention should be carried out according to the characteristics of different classes to improve their health behavior levels.

StrokeHealth behaviorLatent class analysisPredictive factors

郭丽娜、郭园丽、张孟羽、杨彩侠、马珂珂、张格格、魏苗、刘延锦

展开 >

郑州大学第一附属医院神经内科,国家高级卒中中心,郑州 450052

郑州大学护理与健康学院,郑州 450001

郑州大学第一附属医院护理部,郑州 450052

脑卒中 健康行为 潜类别分析 预测因素

国家自然科学基金国家自然科学基金河南省医学科技攻关联合共建项目河南省医学科技攻关联合共建项目中国博士后科学基金

7220422572274179LH-GJ20220429SBGJ2021020762023M733234

2024

中华行为医学与脑科学杂志
中华医学会 济宁医学院

中华行为医学与脑科学杂志

CSTPCD北大核心
影响因子:1.472
ISSN:1674-6554
年,卷(期):2024.33(1)
  • 4