首页|青少年心理危机随机森林预测模型的建立及影响因素分析

青少年心理危机随机森林预测模型的建立及影响因素分析

扫码查看
目的 基于机器学习随机森林算法建立青少年心理危机预测模型,分析青少年心理危机的影响因素.方法 分别在2020年11月与2021年6月,采用整群抽样追踪调查1417名中学生,第一次测量收集人口学资料、症状因素、保护因素等问卷数据,第二次测量抑郁、自杀风险,以是否在第二次测量中呈现中度以上抑郁(抑郁得分≥ 15分)与高自杀风险(自杀风险得分≥7分)为心理危机判定标准.运用SPSS 24.0进行统计学分析,采用R version 4.1.1软件构建青少年心理危机随机森林机器学习预测模型,并分析青少年出现心理危机的高预估因素.结果 (1)中度以上抑郁检出率为10.02%(142/1 417),高自杀风险检出率为30.77%(436/1 417),心理危机检出率为8.19%(116/1 417).(2)心理危机预测模型敏感度为0.79,特异度为0.82,阳性预测值为0.82,阴性预测值为0.79,准确率为0.80,曲线下面积为0.88.(3)青少年心理危机影响因素排名前十的特征变量依次为抑郁情绪、焦虑情绪、自杀意念、自我伤害行为、认知灵活性-可控性、认知灵活性-可选择性、坚毅-坚持努力、坚毅-兴趣一致性、母亲情绪和父亲情绪(模型预测精准度=0.023~0.163).结论 青少年心理危机的发生与症状因素、保护因素、父母情绪关系密切,且有跨时间预估的意义.机器学习随机森林算法能有效识别心理危机个体,识别敏感的危机个体特征.
The establishment of a random forest predictive model and analysis of influencing factors for psycho-logical crisis among adolescent
Objective To establish a predictive model of psychological crisis based on the machine learning random forest algorithm,and to analyze the influencing factors of psychological crisis among adole scent.Methods A total of 1 417 middle school students were surveyed using cluster sampling in two pha-ses,in November 2020 and June 2021.Demographic data,symptom factors,protective factors were collected in the first investigation,and depression and suicide risk were measured in the second investigation.The cri-teria for psychological crisis were moderate to severe depression(depression score≥ 15)and high suicide risk(suicide risk score≥7)in the second measurement.SPSS 24.0 software was used for statistical analysis of variables,and the random forest machine learning predictive model for psychological crisis was established by using R version 4.1.1 software,and the high-estimating factors of adolescent psychological crisis were ana-lyzed.Results(1)The detection rate of moderate to severe depression was 10.02%(142/1 417),the de-tection rate of high suicide risk was 30.77%(436/1 417),and detection rate of the psychological crisis was 8.19%(116/1 417).(2)The sensitivity and specificity of psychological crisis prediction model were 0.79,0.82,positive predictive value was 0.82,negative predictive value was 0.79,accuracy was 0.80 and area un-der curve was 0.88.(3)The top 10 characteristic variables of influencing factors of adolescent psychological crisis were depression,anxiety,suicidal ideation,self-harming behavior,cognitive flexibility-controllability,cognitive flexibility-selectivity,grit-persistence effort,grit-interest consistency,mother's mood and father's mood(model prediction accuracy was 0.023-0.163).Conclusions The occurrence of adolescent psycho-logical crisis is closely related to symptom factors,protective factors and parental emotions,and has the signif-icance of predicting across time.The machine learning random forest algorithm can effectively identify psy-chological crisis individuals and identify sensitive crisis individual characteristics.

Psychological crisisDepressionSuicide riskMachine learningPrediction modelAdolescent

滕姗、王威捷、高欢、赵久波

展开 >

东莞理工学院心理健康教育与咨询中心,东莞 523808

南方医科大学公共卫生学院心理学系,广州 510515

中山大学公共卫生学院,广州 528478

南方医科大学珠江医院精神心理科,广州 510260

展开 >

心理危机 抑郁 自杀风险 机器学习 预测模型 青少年

国家自然科学基金广东省广州市天河区教育科学"十三五"规划一般课题

721740822019Y041

2024

中华行为医学与脑科学杂志
中华医学会 济宁医学院

中华行为医学与脑科学杂志

CSTPCD北大核心
影响因子:1.472
ISSN:1674-6554
年,卷(期):2024.33(7)
  • 6