首页|双相障碍患者自杀行为的随机森林算法和人工神经网络预测模型建立

双相障碍患者自杀行为的随机森林算法和人工神经网络预测模型建立

扫码查看
目的 通过构建基于随机森林和人工神经网络的机器学习模型,建立双相障碍患者的自杀行为预测模型,为患者提供自杀预防和干预的临床决策支持.方法 2020年1月至2023年8月,选取1 005名双相障碍患者作为研究对象,收集其一般临床资料和社会功能缺陷、焦虑、抑郁评分.运用随机森林算法进行特征选择,并以此构建人工神经网络模型,最终对模型拟合效果及模型预测性能进行评估.结果 双相障碍患者的自杀尝试组(n=293例)、自杀意念组(n=332)和无自杀组(n=380)在社会人口学特征、生理和心理因素上均差异有统计学意义(P<0.05).利用随机森林法筛选出文化程度、年龄、游离三碘甲状腺原氨酸(FT3)、认知障碍、绝望感和精神性焦虑6个特征作为主要预测变量.构建人工神经网络模型,其模型预测性能精确度为79.3%,召回率为79.6%,F1分数为79.4%,测试集的AUC为0.89,显示预测模型具有较高的准确度和区分度.结论 本研究构建的基于机器学习的双相障碍患者自杀行为预测模型,具有较高的准确度和区分度,为双相障碍患者自杀行为的预防和干预提供决策依据.
Establishment of suicide behavior prediction models for bipolar disorder patients using random forest and backpropagation neural network
Objective To predict suicidal behaviors in patients with bipolar disorder by constructing a machine learning model based on random forest and backpropagation neural network,and provide clinical decision support for the prevention and intervention of patient suicide.Methods From January 2020 to Au-gust 2023,1 005 patients with bipolar disorder were enrolled.The general clinical data and social dysfunc-tion,anxiety,depression scores of all patients were collected.The random forest algorithm was applied for fea-ture selection,and backpropagation neural network model was constructed for evaluating the model's fitting effect and predictive performance.Results There were statistically significant differences in sociodemo-graphic characteristics and physiological and psychological factors among the suicide attempt group(n=293),suicide ideation group(n=332)and non-suicidal group(n=380)of patients with bipolar disorder(P<0.05).Using the random forest algorithm identified six main predictive variables:educational level,age,free triiodothyronine(FT3),cognitive impairment,hopelessness and psychogenic anxiety.The developed backpropagation neural network model achieved a precision rate of 79.3%,a recall rate of 79.6%,an F1 score of 79.4%,and an AUC of 0.89 on the test set,indicating that the model predictive performance has high accuracy and discriminative power.Conclusion This study developed a machine learning model for predicting suicide in patients with bipolar disorder,which possesses high accuracy and discriminative ability,providing a decision-making basis for the prevention and intervention of suicidal behaviors in patients with bi-polar disorder.

Bipolar disorderSuicide predictionRandom forestBackpropagation neural networkMachine learning

谢宇、朱翔、杨杨、程夏龙、阚斌斌

展开 >

安徽师范大学教育科学学院,芜湖 241000

安徽师范大学计算机与信息学院,芜湖 241000

合肥市第四人民医院焦虑抑郁科,合肥 230022

江苏第二师范学院教育科学学院,南京 211200

展开 >

双相障碍 自杀预测 随机森林 人工神经网络 机器学习

2024

中华行为医学与脑科学杂志
中华医学会 济宁医学院

中华行为医学与脑科学杂志

CSTPCD北大核心
影响因子:1.472
ISSN:1674-6554
年,卷(期):2024.33(12)