首页|基于小波核极限学习机的烟叶烘烤过程的智能识别

基于小波核极限学习机的烟叶烘烤过程的智能识别

扫码查看
烟叶烘烤设备操作复杂、技术含量高、熟练掌握烟叶烘烤技术人员不足等问题,影响了烟叶的烘烤质量.针对上述问题,本文提出了基于小波核极限学习机的烟叶烘烤过程的智能识别方法.实验中对三段式烘烤过程中的叶片变软、主脉变软、勾尖卷边、小打筒、大打筒和干筋6个烘烤阶段分别提取了颜色、纹理和温湿度特征,组建了 9维特征向量进入小波核极限学习机,通过增量型算法自适应地选择神经元个数,快速准确地识别了 6个阶段,得到了 98.33%的识别率.实验结果表明本文提出的基于小波核极限学习机的烟叶烘烤过程的智能识别方法具有一定的可行性,为研发烟叶烘烤智能调控系统奠定了理论基础.
Intelligent recognition of tobacco curing process based on wavelet kernel extreme learning machine
In order to solve the problems of large manpower consumption and unstable baking quality in the tobacco curing process,an intelligent recognition method of tobacco curing process based on wavelet kernel limit learning machine is proposed in this paper.In the experiment,the six baking stages including leaf softening,main vein softening,leaf curling,leaf small rolling,leaf large rolling and stem drying during the three-stage baking process were identified.The color,texture,temperature and humidity features were extracted from the six baking stages and a 9-dimensional feature vector was established to enter the wavelet kernel extreme learning machine.The number of neurons was adaptively selected through an incremental algorithm to identify the six stages quickly and accurately.The recognition rate was 98.33%.The experimental results show that the intelligent recognition method of tobacco curing process based on wavelet kernel extreme learning machine is feasible,which lays a theoretical foundation for the development of tobacco curing intelligent control system.

extreme learning machinewavelet kernel functiontobacco curingfeature extractionrecognition

邢玉清、樊彩霞、豆根生、宋朝鹏、吴莉莉

展开 >

河南农业大学理学院,河南省农业物联网安全与创新工程技术研究中心,河南郑州 450002

信息工程大学网络空间安全学院,河南郑州 450001

河南农业大学农学院,河南郑州 450002

河南农业大学烟草学院,河南郑州 450002

展开 >

极限学习机 小波核函数 烟叶烘烤 特征提取 识别

中国烟草总公司科技重点研发项目中国烟草总公司福建省公司资助项目重庆中烟工业有限责任公司资助项目河南农业大学自然科学类青年创新基金

1102021020072021350000240019YL202202KJCX2017A19

2024

中国烟草学报
中国烟草学会

中国烟草学报

CSTPCD北大核心
影响因子:1.182
ISSN:1004-5708
年,卷(期):2024.30(1)
  • 29