首页|基于改进CRNN网络的卷烟件烟上行码识别方法研究

基于改进CRNN网络的卷烟件烟上行码识别方法研究

扫码查看
在卷烟物流系统中,卷烟追溯标签包含了一维条码未包含的部分分拣关键信息,可极大提升分拣效率,其关键在于高精度标签识别.为实现卷烟追溯标签的精准识别,提出一种基于改进于卷积循环神经网络(Convolutional Recurrent Neural Network,CRNN)的卷烟追溯标签识别网络,称为RA-CRNN.该方法的特征提取受ResNet启发引入了残差结构,并通过注意力和门控机制提升识别精度.改进后算法的识别准确率较目其他先进的文本识别算法有所提升,对追溯标签识别准确率达到97.87%,可满足工业自动化卷烟追溯标签识别的要求.
Research on CRNN based recognition method for cigarette uplink code
In the cigarette logistics system,the cigarette traceability label contains part of the key sorting information not included in the one-dimensional barcode,which can greatly improve the sorting efficiency.The crucial aspect is high-precision label recognition.To accurately recognize cigarette labels,we propose an improved CRNN-based traceability label recognition network,termed RA-CRNN.This method's feature extraction,inspired by ResNet,introduces a residual structure and enhances recognition accuracy via attention and gating mechanisms.Comparative experimental analyses demonstrate that this improved algorithm surpasses other advanced text recognition algorithms in accuracy.For instance,in a Ningbo cigarette factory,the traceability label's identification accuracy reached 97.87%,fulfilling industrial automation requirements for cigarette traceability label identification.

cigarette sortinglabel identificationdeep learningCRNN networ

徐琦、孙顺凯、钱杰、刘剑敏、方利梅

展开 >

浙江中烟工业有限责任公司宁波卷烟厂,宁波市奉化区葭浦西路2001号 315000

件烟分拣 标签识别 深度学习 CRNN网络

2024

中国烟草学报
中国烟草学会

中国烟草学报

CSTPCD北大核心
影响因子:1.182
ISSN:1004-5708
年,卷(期):2024.30(3)
  • 11