首页|基于多方法优势组合的烟叶配方模块组合分类

基于多方法优势组合的烟叶配方模块组合分类

扫码查看
为深入研究卷烟品牌烟叶配方分组方法和原则,基于 457 个烟叶样品的 12 种感官评吸指标,比较了 4 种判别分析和 4种机器学习方法对 4 种烟叶分类的建模集正确率(R)、验证集正确率(r)和平均正确率(m)的影响,并基于分类方法选择和权重分配构建了一种高精度的组合分类方法.结果表明:①与判别分析相比,机器学习的R显著提高,而r显著下降,且LS-SVM的R最高(92.8%),FDA和F-BDA的r最高(80.2%),但m无显著性差异;②优化选择M-BDA、FDA、ANN和KNN四种方法,按精度赋权建立的组合分类方法同时提高了R(95.3%)和r(89.0%),且m由低于 84%提高到 92.2%,并通过理论计算和实际结果验证了组合分类方法的普遍有效性;③组合分类方法Kappa系数均大于 0.8,方法可靠,一致性程度高,验证集m-F1 度量显著提升 21.2%,模型泛化能力大为增强;④优雅感、杂气、余味、润感和清晰度 5 项指标对分类起主要作用,符合利群品牌的风格特征;⑤误判样品(6.5%)指标评分与其模块真实类别的不匹配归因于对库存、成本和质量的平衡,基本符合烟叶配方的调整空间.
Classification of tobacco leaf formula modules based on a combination of multiple methodological advantages
To deeply study grouping methods and principles of cigarette brand tobacco leaf formulas,based on the 457 tobacco samples of 12 kinds of sensory evaluation indexes,this study compared four discriminant analysis and four machine learning methods for modeling set accuracy(R),validation set accuracy(r),and average accuracy(m)across four tobacco leaf classifications.A high-precision composite classification method was constructed based on method selection and weight allocation.Results showed that:(1)Compared with discriminant analysis,machine learning significantly improved R,while r significantly decreased,with LS-SVM having the highest R(92.8%),and FDA and F-BDA having the highest r(80.2%),but there was no significant difference in m;(2)Optimized selection of M-BDA,FDA,ANN,and KNN methods and the composite classification method established by accuracy weighting simultaneously improved R(95.3%)and r(89.0%),and increased m from below 84%to 92.2%,validating the general effectiveness of the composite classification method through theoretical calculations and practical results;(3)The Kappa coefficient of the composite classification method was greater than 0.8,indicating reliability,high consistency,and a significant improvement in validation set m-F1 measure by 21.2%,greatly enhancing the model's generalization ability;(4)Five indicators,namely elegance,off-flavor,aftertaste,moistness,and clarity,played a major role in classification,aligning with the style characteristics of the Liqun brand;(5)Misjudged samples(6.5%)with indicator scores not matching their real module categories were attributed to the balance of stock,cost,and quality,generally conforming to the adjustment space of tobacco leaf formulas.

tobacco leafcomposite classificationdiscriminant analysismachine learningsensory evaluationformulation modules

蒋佳磊、廖付、郝贤伟、汤晓东、陈晓水、朱书秀、赵振杰

展开 >

浙江中烟工业有限责任公司技术中心,杭州市西湖区科海路 118 号 310024

烟叶 组合分类 判别分析 机器学习 感官评吸 配方模块

2024

中国烟草学报
中国烟草学会

中国烟草学报

CSTPCD北大核心
影响因子:1.182
ISSN:1004-5708
年,卷(期):2024.30(6)