首页|基于机器学习的烟丝回弹特性与烟支物理指标关系研究

基于机器学习的烟丝回弹特性与烟支物理指标关系研究

扫码查看
[目的]明确烟丝回弹特性对烟支物理质量的影响.[方法]对不同牌号不同批次烟丝的回弹特性及对应卷制批次的烟支物理质量(烟支硬度、烟支含末率、端部落丝量)进行相关性分析,利用烟丝物理指标(长丝率、中丝率、碎丝率、填充值、含水率)及回弹特性基于机器学习分别搭建并优化烟支物理指标(烟支硬度、烟支含末率、端部落丝量)的预测模型.[结果](1)烟丝回弹特性与烟支硬度为显著正相关,与烟支含末率及烟支端部落丝量之间的相关关系呈负相关关系.(2)烟支硬度的最佳预测模型为网格搜索优化的梯度提升回归,R2 为 0.95;烟支含末率的最佳预测模型为贝叶斯优化的梯度提升回归,R2 为 0.97;烟支端部落丝最佳预测模型为网格搜索优化的随机森林回归,R2 为 0.97.[结论]所构建的模型均具有较高的精准度,在一定实验条件下可用于对烟支物理指标的预测.
Research on the relationship between rebound characteristics of cut tobacco and physical indicators of cigarettes based on machine learning
[Background]This study aims to clarify the impact of the rebound characteristics of cut tobacco on the physical quality of cigarettes.[Methods]The rebound characteristics of cut tobacco of different brands and batches and the physical quality of cigarettes from corresponding production batches(cigarette hardness,cigarette dust content,and end loose filler)were analyzed for correlation.Based on the physical indicators of cut tobacco(long shred rate,medium shred rate,short shred rate,filling power,moisture content)and rebound characteristics,machine learning was used to build and optimize prediction models for the physical indicators of cigarettes(cigarette hardness,cigarette dust content,and end loose filler).[Results](1)The rebound characteristics of cut tobacco were significantly positively correlated with cigarette hardness and negatively correlated with cigarette dust content and end loose filler.(2)The best prediction model for cigarette hardness was gradient boosting regression optimized by grid search,with an R2 of 0.95;the best prediction model for cigarette dust content was gradient boosting regression optimized by Bayesian optimization,with an R2 of 0.97;the best prediction model for end loose filler was random forest regression optimized by grid search,with an R2 of 0.97.[Conclusion]The constructed models all have high accuracy and can be used to predict the physical indicators of cigarettes under certain experimental conditions.

rebound characteristicsphysical indicators of cut tobaccophysical indicators of cigarettesmachine learning

李宜馨、郭朋玮、周茂忠、周利军、纪晓楠、芦柯、李晓

展开 >

郑州轻工业大学 烟草科学与工程学院,河南 郑州 450002

红云红河烟草(集团)有限责任公司,云南 昆明 650231

山东中烟工业有限责任公司青岛卷烟厂,山东 青岛 266101

河南中烟工业有限责任公司技术中心,河南 郑州 450000

展开 >

回弹特性 烟丝物理指标 烟支物理指标 机器学习

2024

中国烟草学报
中国烟草学会

中国烟草学报

CSTPCD北大核心
影响因子:1.182
ISSN:1004-5708
年,卷(期):2024.30(6)