首页|YOLO-VDCW:一种新的轻量化带钢表面缺陷检测算法

YOLO-VDCW:一种新的轻量化带钢表面缺陷检测算法

扫码查看
带钢表面的缺陷检测技术对确保带钢产品质量达到标准至关重要.针对目前带钢表面缺陷检测模型存在结构复杂、计算资源利用不足以及检测精度不高等问题,提出一种新的轻量化带钢表面缺陷检测算法YOLO-VD-CW.首先,引入VanillaNet模块到YOLOv8中来提高计算资源利用效率,实现模型在主干网络的轻量化;其次,采用C2fDSConv替换C2f模块,以精准传递梯度信息,进一步提升计算资源利用率和性能;此外,在C2fDSConv之后嵌入坐标注意力模块,引入坐标信息以增强目标定位准确率和感知能力;最后,将CIoU损失函数替换为Wise-IoU损失函数,以准确地衡量目标框之间的相似性,提高模型的缺陷检测性能.在NEU-DET数据集上,YOLO-VDCW实现平均检测精度(mAP)达到79.8%,相比YOLOv8n,其平均检测精度提高3.8个百分点,计算量和参数量分别减少34.1%和36.8%,检测速度提升37.9%,模型体积仅有4.9 MB.试验结果表明,YOLO-VDCW相对其他算法,在保证轻量化的同时,可有效提高带钢表面缺陷检测精度和速度.
YOLO-VDCW:A new lightweight surface defect detection algorithm for strip steel
The defect detection technology of strip surface is very important to ensure the product quality up to the standard of strip steel.Aiming at the problems of complex structure,insufficient utilization of computing resources and low detection accuracy in current strip surface defect detection models,a new lightweight strip surface defect de-tection algorithm named YOLO-VDCW was proposed.Firstly,the VanillaNet module was introduced into YOLOv8 to improve the efficiency of computing resources utilization and realize the lightweight of the model in the backbone network.Secondly,the C2f module was replaced by C2fDSConv to accurately transmit gradient information and fur-ther improve computing resource utilization and performance.In addition,the coordinate attention module was em-bedded after C2fDSConv,and the coordinate information was introduced to enhance the target positioning accuracy and perception ability.Finally,the CIoU loss function was replaced by Wise-IoU loss function to accurately measure the similarity between target frames and improve the defect detection performance of the model.On the NEU-DET dataset,the average detection accuracy(mAP)of YOLO-VDCW reaches 79.8%,compared with YOLOv8n,the average detection accuracy is increased by 3.8 percent point,the calculation amount and parameter number are re-duced by 34.1%and 36.8%respectively,the detection speed is increased by 37.9%,and the model volume is only 4.9 MB.The experimental results show that compared with other algorithms,YOLO-VDCW can effectively im-prove the accuracy and speed of strip surface defect detection while ensuring lightweight.

strip surface defect detectionYOLOv8lightweightcoordinate attentionWise-IoU

刘凤春、张靖、薛涛、张猛、张春英、王立亚

展开 >

华北理工大学理学院,河北唐山 063210

铁矿石优选与铁前工艺智能化河北省工程研究中心,河北唐山 063210

唐山市工程计算重点实验室,河北唐山 063210

唐山市智能工业与图像处理技术创新中心,河北唐山 063210

河北省数据科学与应用重点实验室,河北唐山 063210

展开 >

带钢表面缺陷检测 YOLOv8 轻量化 坐标注意力 Wise-IoU

河北省属高校基本科研业务费资专项唐山市基础应用研究项目

JST202200122130225G

2024

中国冶金
中国金属学会

中国冶金

CSTPCD北大核心
影响因子:0.907
ISSN:1006-9356
年,卷(期):2024.34(6)