首页|高炉信息流处理及基于粒子群优化BP神经网络的焦比预测

高炉信息流处理及基于粒子群优化BP神经网络的焦比预测

扫码查看
入炉焦比对高炉的产量与效益有着直接的影响,但由于高炉冶炼过程受多重共线性现象影响,其预测精度普遍不高.为此,首先对高炉信息流进行预处理,将高炉数据分成2类分别进行异常值分析与处理;其次通过皮尔逊相关性分析、斯皮尔曼相关性分析、MIC最大互信息系数、逐步回归分析手段分析出与高炉焦比相关性强的参数变量作为预测模型的输入参数变量,对32个参数变量进行筛选,最终确定16个特征变量,并对其按相关性进行排序综合分析;最后建立基于误差反向传播网络(BP网络)高炉焦比预测模型,在此基础上建立粒子群优化的BP神经网络(PSO-BP)高炉焦比预测模型,并对模型进行了评价.结果表明,粒子群优化的BP神经网络预测模型在预测高炉焦比方面表现出更佳的性能,具有更好的准确度和精度,取得了较好的预测效果.
Information flow processing in blast furnace and coke ratio prediction based on particle swarm optimisation with BP neural network
The coke ratio of a blast furnace has direct effect on its output and operational efficiency.However,the prediction accuracy of this ratio is typically hindered by the multitude of covariance phenomena inherent in the blast furnace smelting process.To address this challenge,the blast furnace data was initially preprocessed and categorized for separating outlier analysis and treatment.Subsequently,a comprehensive analysis leveraging Pearson's correla-tion,Spearman's rank correlation,Maximum Information Coefficient(MIC),and stepwise regression was conduc-ted to identify the parameter variables most strongly correlated with the coke ratio.This process reduced the initial pool of 32 parameters to 16 key feature variables,which were then sorted and analyzed based on their relevance.Fi-nally,a blast furnace coke ratio prediction model employing an error backpropagation network(BPN)was estab-lished.Furthermore,a particle swarm optimization-based BP neural network(PSO-BP)model was developed to re-fine the prediction capabilities.Evaluation of both models reveals that the PSO-BP model exhibits superior perform-ance,achieving higher accuracy and precision in predicting the coke ratio of the blast furnace.

coke ratioblast furnaceinformation flowneural networkparticle swarm

于不可、门经纬、亓睿、张琦钰、张宇焱、吴促敏、李玉柱、杨松陶

展开 >

辽宁科技大学材料与冶金学院,辽宁鞍山 114051

内蒙古包钢钢联股份有限公司技术中心,内蒙古包头 014010

东北大学辽宁省冶金资源循环科学重点实验室,辽宁沈阳 110819

焦比 高炉 信息流 神经网络 粒子群

2024

中国冶金
中国金属学会

中国冶金

CSTPCD北大核心
影响因子:0.907
ISSN:1006-9356
年,卷(期):2024.34(12)