首页|人工智能赋能城市滨水空间秋季景观特征识别与活力提升——以上海市黄浦江为例

人工智能赋能城市滨水空间秋季景观特征识别与活力提升——以上海市黄浦江为例

扫码查看
上海市积极深化"一江一河"建设,打造具有全球影响力的世界级滨水空间,以绿化品质提升的"四化"建设为引领,促进季节性景观营造,从而激发滨水空间活力.针对城市滨水空间尺度大、范围广、数据多的特征,以人工智能赋能下滨水秋季景观特征的全覆盖、多时相、数字化识别为核心,以上海市黄浦江滨水空间中心城区段为例,训练滨水空间秋季景观特征识别的深度学习算法构建语义分割模型,实现对实证案例大批量样本数据的秋季景观特征智能化识别与测度;通过基于位置的服务(location-based services,LBS)大数据分析手段,量化揭示上海市黄浦江滨水空间中心城区段活力时空分布特征.探索影响城市滨水空间活力的秋季景观特征的关键因素,为城市滨水空间秋季景观的营造与活力激发提供理论依据与技术支撑.
Identification of Autumn Landscape Characteristics and Vitality Improvement in Urban Waterfront Spaces Based on Artificial Intelligence:A Case Study of Huangpu River in Shanghai
Shanghai actively deepens the construction of"One River,One Riverbank"while emphasizing the advancement of the"Four Enhancements"to enhance green quality.This initiative aims to create a globally influential world-class waterfront space,promoting urban ecosystem services and stimulating urban vitality.This research aims to achieve full coverage,multi-temporal,and digitized intelligent recognition for urban waterfront spaces based on artificial intelligence.Taking the central urban area along the Huangpu River waterfront in Shanghai as an example,a deep learning algorithm for identifying autumn landscape characteristics in waterfront spaces was trained to construct a semantic segmentation model.By utilizing LBS big data analysis,the spatiotemporal distribution characteristics of vitality in the central urban area along the Huangpu River waterfront in Shanghai were elucidated.This study efficiently and precisely measured the autumn landscape characteristics of a large batch of empirical case sample data,revealing key factors influencing the vitality of urban waterfront spaces.These findings provide theoretical basis and technical support for urban waterfront space renewal,reconstruction,and landscape design.

landscape architectureartificial intelligenceurban waterfront spaceautumn landscape characteristicssemantic segmentationlocation-based services(LBS)

汪洁琼、江卉卿、陈俊延、柯楠、王敏

展开 >

同济大学建筑与城市规划学院景观学系(上海200092)

高密度人居环境生态与节能教育部重点实验室(同济大学)水绿生态智能分实验中心

自然资源部大都市区国土空间生态修复工程技术创新中心

同济大学建筑与城市规划学院(上海200092)

广州市城市规划勘测设计研究院有限公司(广州510060)

同济大学建筑与城市规划学院党委(上海200092)

展开 >

风景园林 人工智能 城市滨水空间 秋季景观特征 语义分割 基于位置的服务(LBS)

国家自然科学基金面上项目上海科委重点研发项目同济大学建筑设计研究院(集团)有限公司自主课题

5217805322dz12022002023J-JB02

2024

中国园林
中国风景园林学会

中国园林

CSTPCD北大核心
影响因子:1.108
ISSN:1000-6664
年,卷(期):2024.40(9)
  • 17