首页|风景园林平面图生成设计数据集增强方法研究

风景园林平面图生成设计数据集增强方法研究

扫码查看
平面图生成是生成设计研究中的核心部分,然而数据集的匮乏制约了生成设计研究的发展.为了低成本地解决数据瓶颈问题,提出并验证了一个基于算法驱动的数据增强框架.首先,结合深度学习和生成设计任务特征,提出外环境切割、分层训练和曲线优化3个关键步骤,基于此构建了一套完整有效的风景园林平面图数据增强框架.其次,基于测试集对框架各个部分进行消融实验,验证该框架的有效性.最后,应用该框架生成一套高质量的数据集,并将数据应用于风景园林生成设计的"图像分割""布局生成""平面渲染"三大主流任务,在实践中验证该框架的有效性.
Research on Enhancement Methods for Generating Design Datasets for Landscape Architecture Plans
Plane graph generation is a core part of generative design research,yet the lack of datasets constrains the development of generative design research.In order to solve the data bottleneck problem cost-effectively,this study proposes and validates an algorithm-driven data enhancement framework based on algorithms.Firstly,combining deep learning and generative design task characteristics,three key steps of outer environment cutting,hierarchical training,and curve optimization are proposed,based on which a complete and effective data enhancement framework for landscape plan drawings is constructed.Secondly,ablation experiments are conducted on each part of the framework based on the test set to verify the effectiveness of the framework.Finally,the framework is applied to generate a set of high-quality datasets,and the data are applied to the three main mainstream tasks of"image segmentation","layout generation"and"planar rendering"in the design of landscape garden generation to verify the framework in practice.

landscape architecturedeep learningdata enhancementplane generation designsemantic segmentation

陈然、罗晓敏、凌霄、赵晶

展开 >

北京林业大学园林学院(北京100083)

清华大学建筑学院(北京100084)

风景园林 深度学习 数据增强 平面生成设计 语义分割

国家自然科学基金项目

52208041

2024

中国园林
中国风景园林学会

中国园林

CSTPCD北大核心
影响因子:1.108
ISSN:1000-6664
年,卷(期):2024.40(9)
  • 7