首页|面向多目标权衡的环武夷山国家公园城乡居民点用地布局优化研究:基于多源数据和蚁群算法

面向多目标权衡的环武夷山国家公园城乡居民点用地布局优化研究:基于多源数据和蚁群算法

扫码查看
优化国家公园周边城乡居民点用地布局对统筹国家公园建设和区域发展具有重要意义.如何实现多目标的权衡和统筹是用地布局优化的瓶颈.基于多源开放数据优化评价指标体系,结合多目标加权法改进蚁群算法建构面向多目标权衡的环国家公园城乡居民点用地布局优化模型,并以毗邻武夷山国家公园的5个县市为研究区域,探索权衡保护与发展目标的布局优化方案.结果显示:1)环武夷山国家公园城乡居民点用地布局主要集中在5个县市的城区,外围零星分布;2)国家公园周边适宜区和较适宜区分别占总面积的5.38%和29.44%;3)基于梯度设定了紧凑度和适宜性的权衡方案,并基于比较分析确定最佳推荐方案.以期为国家公园周边城乡空间规划优化与可持续发展提供技术支持和案例参照.
Multi-Objective Trade-off Optimization of Layout for Urban-Rural Settlements around Wuyishan National Park:Based on Multi-Source Data and Ant Colony Algorithm
Optimizing the spatial layout of urban and rural settlements surrounding national parks is crucial for harmonizing national park conservation with regional development.However,achieving multi-objective trade-offs and overall planning is the bottleneck of land layout optimization.Based on multi-source open data to optimize the evaluation index system,we combined with the multi-objective weighting method to improve the ant colony algorithm to construct a multi-objective trade-off oriented optimization model for urban and rural settlements around the national park,and took the five counties or cities around Wuyishan National Park as the study area,to explore the optimization of the layout of the trade-off between conservation and development objectives.It was revealed that,1)Urban and rural residential areas around Wuyishan National Park were predominantly concentrated in the urban centers of five counties and cities,with sporadic distributions in the periphery.2)Suitable and relatively suitable areas around the national park comprised 5.38%and 29.44%of the total area respectively.3)A trade-off scheme between compactness and suitability based on gradient analysis was proposed and the optimal scheme was identified through comparative analysis.The study will provide technical support and a reference case for optimizing and sustainably developing spatial planning in areas surrounding national parks.

landscape architecturenational parkmulti-objective optimizationant colony algorithmregional planning

傅田琪、廖凌云、陈大樑、曹越、兰思仁

展开 >

福建农林大学风景园林与艺术学院、武夷山国家公园研究院(福州350002)

福建农林大学风景园林与艺术学院(福州350002)

清华大学建筑学院景观学系(北京100084)

福建农林大学(福州350002)

展开 >

风景园林 国家公园 多目标优化 蚁群算法 区域规划

2024

中国园林
中国风景园林学会

中国园林

CSTPCD北大核心
影响因子:1.108
ISSN:1000-6664
年,卷(期):2024.40(12)