首页|利用人工智能与人工阅片进行肋骨骨折性质诊断的比较研究

利用人工智能与人工阅片进行肋骨骨折性质诊断的比较研究

Comparison of the Diagnosis of Rib Fracture Types Using Artificial Intelligence and Manual Image Interpretation

扫码查看
目的:研究AI在肋骨骨折检测中的表现、灵敏度及误诊与漏诊原因.方法:本研究回顾性分析本院100例经CT确诊的肋骨骨折患者.利用uAI Discover人工智能软件(uAI)对肋骨骨折进行自动识别.两名影像医师(医师A、医师B)分别进行诊断,再利用uAI软件重新诊断.采用两名高级影像科医师共同阅片结果作为诊断"金标准".诊断错误类型包括:AI或医生将部位误诊为骨折,或骨折类型判断与金标准不符.若实际骨折部位和类型与金标准相符,认定诊断正确.结果:100例患者共检出肋骨骨折424根,涉及563个部位,包括错位性骨折131处、非错位性骨折218处及陈旧性骨折214处.医师A、医师B独立诊断时,误差分别为39处和31处.uAI在三种骨折类型准确度上均高于两名医师.医师A、医师B利用uAI辅助诊断后,诊断准确性高于仅用uAI.uAI存在49处骨折诊断偏差,包括漏诊14处、假阳性12处(主要为非错位性骨折),分类错误23处(主要为陈旧性骨折).uAI漏诊率:错位性骨折4.27%、非错位性骨折3.67%、陈旧性骨折1.52%.结论:AI在肋骨骨折诊断中具有应用潜力.通过优化算法、加强机器学习、验证及医师合作,AI未来在临床实践中将发挥更大作用.
Objective:To investigate the performance,sensitivity,and causes of misdiagnosis and missed diagnosis of AI in the detection of rib fractures.Methods:This study retrospectively analyzed 100 patients diagnosed with rib fractures by CT in our hospital.The uAI Discover artificial intelligence software(uAI)was used for automatic identification of rib fractures.Two radiologists(doctor A,doctor B)conducted diagnoses separately,and then re-diagnosed using the uAI software.The joint reading results of two senior radiologists were used as the"gold standard"for diagnosis.Diagnostic errors included:AI or doctors misdiagnosing a site as a fracture or misjudging the fracture type compared to the gold standard.If the actual fracture site and type were consistent with the gold standard,the diagnosis was considered correct.Results:A total of 424 rib fractures were detected in 100 patients,involving 563 sites,including 131 dislocated fractures,218 non-dislocated fractures,and 214 old fractures.Doctor A and doctor B had 39 and 31 diagnostic errors,respectively,when diagnosing independently.The accuracy of uAI for the three types of fractures was higher than that of the two doctors.Doctors A and B had higher diagnostic accuracy with the assistance of uAI compared to using uAI alone.uAI had 49 diagnostic deviations,including 14 missed diagnoses,12 false positives(mainly non-dislocated fractures),and 23 classification errors(mainly old fractures).The missed diagnosis rates of uAI were 4.27%for dislocated fractures,3.67%for non-dislocated fractures,and 1.52%for old fractures.Conclusion:AI has potential in the diagnosis of rib fractures.By optimizing algorithms,strengthening machine learning,verification,and collaboration with doctors,AI is expected to play a greater role in clinical practice in the future.

artificial intelligencerib fracturesdiagnostic accuracymisdiagnosis and missed diagnosisgold standard

陈豫

展开 >

北京市大兴区中西医结合医院放射科(北京 100076)

人工智能 肋骨骨折 诊断准确性 误诊与漏诊 金标准

2024

中国医疗器械信息
中国医疗器械行业协会

中国医疗器械信息

影响因子:0.375
ISSN:1006-6586
年,卷(期):2024.30(1)
  • 7