首页|LIDC-IDRI肺结节数据集解析及对构建中医共享数据集的意义

LIDC-IDRI肺结节数据集解析及对构建中医共享数据集的意义

扫码查看
通过搭建环境运行lidc_nodule_detection_master项目,对LIDC-IDRI数据集进行解析,并利用卷积神经网络、长短时记忆网络等对已标注的肺结节计算机体层成像医学影像进行训练,并用相关的测试数据集进行验证.该项目,对于中医共享数据集的构建,如类似DICOM文件的生成(舌像图、脉象图等),相关属性及特征的标注,XML文件的构建,相关算法的开发等,具有重要的参考借鉴意义.
Analysis of LIDC-IDRI Pulmonary Nodules Data and Its Significance for Building a Shared Dataset of Traditional Chinese Medicine
This article analyzes the LIDC-IDRI dataset,and trains annotated medical images using convolutional neural networks,long-term and short-term memory networks,and tests them using relevant test datasets.For the corresponding test data,relevant algorithms can be used for initial screening to handle repetitive and cumbersome preliminary judgment tasks.Due to the judgment of traditional Chinese medicine syndrome types,it is similar to the detection of pulmonary nodules,but more complex.Therefore,the deep learning neural network framework has specific reference significance for the discrimination of traditional Chinese medicine syndrome types,and is also a way to integrate traditional Chinese and Western medicine.

LIDC-IDRIpulmonary nodulesDICOMtraditional Chinese medicine shared datasetrecurrent neural networkconvolutional neural network

李旖旎、刘子晴、成福春、姚政

展开 >

上海中医药大学附属岳阳中西医结合医院(上海 200437)

LIDC-IDRI 肺结节 DICOM 中医共享数据集 循环神经网络 卷积神经网络

2024

中国医疗器械信息
中国医疗器械行业协会

中国医疗器械信息

影响因子:0.375
ISSN:1006-6586
年,卷(期):2024.30(5)
  • 6