首页|人工神经网络优化油莎豆油亚临界萃取工艺

人工神经网络优化油莎豆油亚临界萃取工艺

Optimization of subcritical butane extraction for tiger nut oil based on artificial neural network coupled with PSO

扫码查看
为优化亚临界丁烷萃取脱皮油莎豆油工艺,采用单因素试验确定因素水平,中心复合表面设计(CCF)安排寻优试验,在此基础上分别构建了响应面(RSM)和反向传播人工神经网络(BP-ANN)模型,运用粒子群算法(PSO)对BP-ANN模型进行优化,并对RSM和PSO-BP-ANN模型的寻优结果进行了比较.结果表明,RSM模型优化的萃取条件为:料液比(脱皮油莎豆∶丁烷)1∶10.36 g/mL、萃取时间45 min、萃取温度30℃、坯料厚度0.5 mm;PSO-BP-ANN模型优化的萃取条件为:料液比1∶10.67 g/mL、萃取时间40.10 min、萃取温度34℃、轧坯厚度0.5 mm.在最佳条件下,RSM模型预测提取率为 91.63%,验证值为 94.27%,相对误差 2.56%;PSO-BP-ANN模型预测值为95.58%,验证值为95.14%,相对误差0.46%.采用人工神经网络耦合粒子群算法(PSO-BP-ANN)优化油莎豆油亚临界萃取工艺,具有提取率高、相对误差小等优势.本研究可为亚临界萃取技术在油莎豆油高效制取中应用提供参考.
In order to optimize the subcritical butane extraction process for dehulled tiger nut oil,single factor experiment was taken to determine the levels of the factor,central composite face-centered design(CCF)was used to optimize the subcritical extraction conditions,based on which response surface methodology(RSM)and back propagation artificial neural network(BP-ANN)models were constructed,respectively.The BP-ANN was optimized by particle swarm optimization(PSO),and the optimization results of the RSM model and PSO-BP-ANN model were compared.The optimal extraction conditions optimized by RSM and PSO-BP-ANN models were as follows:solid-liquid ratio(dehulled tiger nut:butane)was 1:10.36 g/mL,incubation time for 45 min,extraction temperature was 30℃,the rolling thickness was 0.5 mm;the solid-liquid ratio was 1:10.67 g/mL,the extraction time was 40.10 min,the extraction temperature was 34℃,and the thickness of the rolled billet was 0.5 mm.Under the optimal con-ditions,the predicted extraction rate of the RSM model was 91.63%,the experimental result was 94.27%,and the relative error was 2.56%.The prediction value of the PSO-BP-ANN model was 95.58%,the validation value was 95.14%,and the relative error was 0.46%.The artificial neural network coupled particle swam optimization(PSO-BP-ANN)was used to optimize the subcritical extraction process of tiger nut oil,which had advantages of high ex-traction rate and small error.This study can provide a reference for the application of subcritical extraction technolo-gy in the efficient production of tiger nut oil.

back propagation artificial neural networkparticle swarm optimizationsubcritical butane ex-tractiondehulled tiger nutprocess optimization

邓淑君、郝琴、万楚筠、郭婷婷、魏春磊、郑明明

展开 >

中国农业科学院油料作物研究所,湖北 武汉,430062

武汉轻工大学,湖北 武汉,430023

油料油脂加工技术国家地方联合工程实验室,湖北 武汉,430062

反向传播人工神经网络 粒子群优化算法 亚临界丁烷萃取 脱皮油莎豆 工艺优化

中国农业科学院科技创新工程支持企业技术创新发展项目

CAAS-ASTIP-2021-OCRI2021BLB151

2024

中国油料作物学报
中国农业科学院油料作物研究所

中国油料作物学报

CSTPCD北大核心
影响因子:1.296
ISSN:1007-9084
年,卷(期):2024.46(5)
  • 12