首页|人工神经网络优化油莎豆油亚临界萃取工艺

人工神经网络优化油莎豆油亚临界萃取工艺

扫码查看
为优化亚临界丁烷萃取脱皮油莎豆油工艺,采用单因素试验确定因素水平,中心复合表面设计(CCF)安排寻优试验,在此基础上分别构建了响应面(RSM)和反向传播人工神经网络(BP-ANN)模型,运用粒子群算法(PSO)对BP-ANN模型进行优化,并对RSM和PSO-BP-ANN模型的寻优结果进行了比较.结果表明,RSM模型优化的萃取条件为:料液比(脱皮油莎豆∶丁烷)1∶10.36 g/mL、萃取时间45 min、萃取温度30℃、坯料厚度0.5 mm;PSO-BP-ANN模型优化的萃取条件为:料液比1∶10.67 g/mL、萃取时间40.10 min、萃取温度34℃、轧坯厚度0.5 mm.在最佳条件下,RSM模型预测提取率为 91.63%,验证值为 94.27%,相对误差 2.56%;PSO-BP-ANN模型预测值为95.58%,验证值为95.14%,相对误差0.46%.采用人工神经网络耦合粒子群算法(PSO-BP-ANN)优化油莎豆油亚临界萃取工艺,具有提取率高、相对误差小等优势.本研究可为亚临界萃取技术在油莎豆油高效制取中应用提供参考.
Optimization of subcritical butane extraction for tiger nut oil based on artificial neural network coupled with PSO
In order to optimize the subcritical butane extraction process for dehulled tiger nut oil,single factor experiment was taken to determine the levels of the factor,central composite face-centered design(CCF)was used to optimize the subcritical extraction conditions,based on which response surface methodology(RSM)and back propagation artificial neural network(BP-ANN)models were constructed,respectively.The BP-ANN was optimized by particle swarm optimization(PSO),and the optimization results of the RSM model and PSO-BP-ANN model were compared.The optimal extraction conditions optimized by RSM and PSO-BP-ANN models were as follows:solid-liquid ratio(dehulled tiger nut:butane)was 1:10.36 g/mL,incubation time for 45 min,extraction temperature was 30℃,the rolling thickness was 0.5 mm;the solid-liquid ratio was 1:10.67 g/mL,the extraction time was 40.10 min,the extraction temperature was 34℃,and the thickness of the rolled billet was 0.5 mm.Under the optimal con-ditions,the predicted extraction rate of the RSM model was 91.63%,the experimental result was 94.27%,and the relative error was 2.56%.The prediction value of the PSO-BP-ANN model was 95.58%,the validation value was 95.14%,and the relative error was 0.46%.The artificial neural network coupled particle swam optimization(PSO-BP-ANN)was used to optimize the subcritical extraction process of tiger nut oil,which had advantages of high ex-traction rate and small error.This study can provide a reference for the application of subcritical extraction technolo-gy in the efficient production of tiger nut oil.

back propagation artificial neural networkparticle swarm optimizationsubcritical butane ex-tractiondehulled tiger nutprocess optimization

邓淑君、郝琴、万楚筠、郭婷婷、魏春磊、郑明明

展开 >

中国农业科学院油料作物研究所,湖北 武汉,430062

武汉轻工大学,湖北 武汉,430023

油料油脂加工技术国家地方联合工程实验室,湖北 武汉,430062

反向传播人工神经网络 粒子群优化算法 亚临界丁烷萃取 脱皮油莎豆 工艺优化

中国农业科学院科技创新工程支持企业技术创新发展项目

CAAS-ASTIP-2021-OCRI2021BLB151

2024

中国油料作物学报
中国农业科学院油料作物研究所

中国油料作物学报

CSTPCD北大核心
影响因子:1.296
ISSN:1007-9084
年,卷(期):2024.46(5)
  • 12