首页|微乳液法制备锂离子电池用ZnMn2O4/Mn3O4亚微米棒及其转化反应机理

微乳液法制备锂离子电池用ZnMn2O4/Mn3O4亚微米棒及其转化反应机理

扫码查看
采用油包水微乳液法再经煅烧制备分级ZnMn2O4/Mn3O4复合亚微米棒.ZnMn2O4/Mn3O4电极在550次连续放电/充电循环中,在500 mA/g充放电电流条件下,其比容量从440 mA·h/g增加到910 mA·h/g,并在100 mA/g下提供1276 mA·h/g的超高比容量,远高于ZnMn2O4或Mn3O4的理论比容量.采用循环伏安法和微分容量分析法研究这种现象的潜在机制,两者均揭示在充放电循环过程中新的可逆氧化还原反应的产生和增强.这种新的可逆转化反应可能是由于电极材料在循环过程中的活化过程引起的,从而解释电极材料容量在循环过程中不断上升的现象;而容量超过理论值表明还有其他因素对容量的增长起作用.
Microemulsion synthesis of ZnMn2O4/Mn3O4 sub-microrods for Li-ion batteries and their conversion reaction mechanism
The hierarchical ZnMn2O4/Mn3O4 composite sub-microrods were synthesized via a water-in-oil micro- emulsion method followed by calcination. The ZnMn2O4/Mn3O4 electrode displays an intriguing capacity increasing from 440 to 910 mA·h/g at 500 mA/g during 550 consecutive discharge/charge cycles, and delivers an ultrahigh capacity of 1276 mA·h/g at 100 mA/g, which is much greater than the theoretical capacity of either ZnMn2O4 or Mn3O4 electrode. To investigate the underlying mechanism of this phenomenon, cyclic voltammetry and differential capacity analysis were applied, both of which reveal the emergence and the growth of new reversible redox reactions upon charge/discharge cycling. The new reversible conversions are probably the results of an activation process of the electrode material during the cycling process, leading to the climbing charge storage. However, the capacity exceeding the theoretical value indicates that there are still other factors contributing to the increasing capacity.

ZnMn2O4/Mn3O4 sub-microrodsmicroemulsionconversion reaction mechanismcyclic voltammetrydifferential capacity analysis

冯婷婷、杨俭、代思忆、王俊超、吴孟强

展开 >

电子科技大学材料与能源学院,成都 611731

ZnMn2O4/Mn3O4亚微米棒 微乳液 转化反应机理 循环伏安法 微分容量分析

Ting-ting FENG acknowledges the financial support from Professor Paul V. BRAUN at Department of Materials Science and EngineerinTing-ting FENG acknowledges the financial support from Professor Paul V. BRAUN at Department of Materials Science and EngineerinTing-ting FENG acknowledges the financial support from Professor Paul V. BRAUN at Department of Materials Science and Engineerinresearch was partly carried out in the Frederick Seitz Materials Research Laboratory Central Research Facilities, University

2019YFH00022019YFG02222019YFG0526

2021

中国有色金属学报(英文版)
中国有色金属学会

中国有色金属学报(英文版)

CSTPCDCSCDSCI
影响因子:1.183
ISSN:1003-6326
年,卷(期):2021.31(1)
  • 4
  • 2