Effects of microstructure on tensile properties of AA2050-T84 Al−Li alloy
The effect of microstructure evolution on the tensile properties of 2050 Al−Li alloy thick plate aged at 150 ℃ with 80 mm in thickness (t) was studied from a microstructural perspective. Scanning electron microscope, optical microscope, transmission electron microscope and X-ray diffractometer were used to explore the surface (t/6), interlayer (t/3) and center (t/2) thickness layer of this alloy. Results show that the secondary phases on grain boundaries, precipitates and textures vary depending on the thickness location. The precipitation strengthening has a stronger influence on the alloy along the rolling direction than the transverse direction from the under-aged to the peak-aging condition;however, its effect on the anisotropy is insignificant. The higher Taylor factor (M) value caused by strongerβfiber rolling textures and the intergranular phases is the main reason that leads to the highest strength at the t/2 position along the rolling direction. The M-value has a limited change at different thickness layers along the transverse direction, which causes the same tensile strength.