首页|从热力学计算到定形体系的实验表征设计全金属复合相变材料

从热力学计算到定形体系的实验表征设计全金属复合相变材料

扫码查看
用于热能管理的复合相变材料(C-PCMs)利用其一个或多个低熔点活性相的可逆相变(如熔化—凝固)存储和释放热能作为潜热.同时,高熔点的惰性相可以提供额外的性能,如定形性和改善的导热性.从难混溶合金中可获得具有这些特征的全金属复合材料体系.本文将热力学计算和实验测试相结合,探讨二元(Al-In,Al-Sn,Al-Bi和Cu-Bi)和三元(Al-In-Sn和Al-Bi-Sn)难混溶合金在100~300 ℃的温度范围内用作C-PCMs的潜力.结果表明,将这两种方法相结合对于全面理解复合体系和找到满足设计需求的最佳解决方案十分必要,它克服了"试错"法浪费时间的弊端,并为模拟提供了高质量的数据.
Design of fully-metallic phase change composites from thermodynamic calculations to experimental characterization of form-stable systems
Composite phase change materials(C-PCMs)for thermal energy management exploit the reversible phase transition(e.g.,melting-solidification)of their one or more low-melting active phases to store and release thermal energy as latent heat.At the same time,the high-melting passive phases can provide additional properties,like form-stability and enhanced thermal conductivity.Fully-metallic composite systems with these features can be obtained from immiscible alloys.In this work,thermodynamic calculations and experimental tests are combined to explore the potential of a set of binary(Al-In,Al-Sn,Al-Bi and Cu-Bi)and ternary(Al-In-Sn and Al-Bi-Sn)immiscible alloys for their use as C-PCMs in a temperature range between 100 and 300 ℃.The results show that the combination of the two approaches proved to be necessary to have a full comprehension of the composite system and find the best solution for design requirements,overcoming the time-wasting"trial-and-error"approach and providing high-quality data for simulations.

composite phase change materialsalloy designthermodynamic propertiesform-stabilityheat storage

Chiara CONFALONIERI、Alessandra CAMNAGHI、Elisabetta GARIBOLDI

展开 >

Politecnico di Milano,Department of Mechanical Engineering,Via La Masa 1,20156 Milan,Italy

复合相变材料 合金设计 热力学性能 定形性 储热

Italian Ministry of Education,University

2024

中国有色金属学报(英文版)
中国有色金属学会

中国有色金属学报(英文版)

CSTPCD
影响因子:1.183
ISSN:1003-6326
年,卷(期):2024.34(5)