首页|基于机器学习与显微组织的AA2099铝锂合金显微组织与硬度关系建模

基于机器学习与显微组织的AA2099铝锂合金显微组织与硬度关系建模

扫码查看
提出一种将机器学习和显微组织分析相结合的方法,通过纳米压痕、X射线衍射和电子背散射衍射(EBSD)技术,研究AA2099铝锂合金显微组织与硬度的关系.利用随机森林回归(RFR)模型,基于显微组织特征对硬度进行预测,揭示硬度的影响因素并对其重要性进行排序.研究表明,压痕到晶界的距离(Ddis)越小、最短晶粒轴(Dmin)越短、Schmidt因子(SFFD)越小以及{111}滑移面和表面夹角的正弦值(sinθmin)越大,硬度越高.在硬度预测中,Ddis和D min为关键因素.大角度晶界能阻碍位错滑移,从而提高材料硬度.此外,晶体学取向对硬度也具有显著影响,特别是在{111}Al惯习面上析出T 1相时.这种影响归因于在压痕加载过程中所遇到的不同类型的T 1相变体.因此,显微组织特征的重要性排序取决于T1相,在T1相有限的样品中,排序为Ddis或Dmin>SFFD>sinθmin;而在具有大量T1相的样品中,排序变为Ddis或Dmin>sinθmin>SFFD.
Hybrid machine learning and microstructure-based approach for modeling relationship between microstructure and hardness of AA2099 Al?Li alloy
A hybrid approach combining machine learning and microstructure analysis was proposed to investigate the relationship between microstructure and hardness of AA2099 Al−Li alloy through nano-indentation,X-ray diffraction (XRD) and electron backscatter diffraction (EBSD) technologies. Random forest regression (RFR) model was employed to predict hardness based on microstructural features and uncover influential factors and their rankings. The results show that the increased hardness correlates with a smaller distance from indentation to grain boundary (Ddis) or a shorter minimum grain axis (Dmin),a lower Schmidt factor in friction stir weld direction (SFFD),and higher sine values of the angle between {111} slip plane and surface (sin θmin). Ddis and Dmin emerge as pivotal determinants in hardness prediction. High-angle grain boundaries imped dislocation slip,thereby increasing hardness. Crystallographic orientation also significantly influences hardness,especially in the presence of T1 phases along {111}Al habit planes. This effect is attributable to the variation in encountered T1 variants during indenter loading. Consequently,the importance ranking of microstructural features shifts depending on T1 phase abundance:in samples with limited T1 phases,Ddis or Dmin>SFFD>sin θmin,while in samples with abundant T1 phases,Ddis or Dmin>sin θmin>SFFD.

machine learningT1 phasehardnessAl−Li alloy

祝祥辉、杨绪盛、黄伟九、龚苗、汪鑫、李梦迪

展开 >

昆明理工大学材料科学与工程学院,昆明 650093

重庆文理学院材料科学与工程学院,重庆 402160

重庆理工大学材料科学与工程学院,重庆 400044

重庆大学材料科学与工程学院,重庆 400044

展开 >

机器学习 T1相 硬度 铝锂合金

2024

中国有色金属学报(英文版)
中国有色金属学会

中国有色金属学报(英文版)

CSTPCD
影响因子:1.183
ISSN:1003-6326
年,卷(期):2024.34(11)