Quantum chemical study of adsorption of hydroxyl and hydroxyl calcium on pyrite (100) surface bearing vacancy defects
The effects of S-vacancy and Fe-vacancy on the adsorption of hydroxyl and hydroxyl calcium on the pyrite surface were investigated, respectively, by density functional theory (DFT). The calculation results indicate that Fe-vacancy can weaken the adsorption of hydroxyl, and S-vacancy can enhance the adsorption of hydroxyl calcium. Both Fe-vacancy and S-vacancy can enhance the adsorption of hydroxyl calcium on the pyrite surface. The adsorption of hydroxyl on the iron site resulted from S-vacancy is stronger than that of the sulphur site resulted from Fe-vacancy. For the hydroxyl calcium molecule, the oxygen atom bonds with the iron atom on the pyrite surface containing S-vacancy, and the calcium atom bonds with the sulphur atom around the Fe-vacancy, which enhances the adsorption of calcium on the pyrite surface.