首页|增材制造镍基高温合金成形过程数值模拟研究进展

增材制造镍基高温合金成形过程数值模拟研究进展

扫码查看
增材制造技术为镍基高温合金复杂零部件的制造带来了前所未有的机遇,然而在实验研究和实际生产中仍然面临着较大的竞争压力,制约了增材制造镍基高温合金的快速发展。近年来,不同尺度的模拟方法逐步应用于指导镍基高温合金的增材制造和开发。宏观尺度模拟关注成形过程中的热历史、成形控制、残余应力分布和力学行为;介观尺度模拟主要用于解决成形过程中的激光吸收、熔池内熔体流动、熔化凝固、缺陷形成以及裂纹防治等问题;微观尺度模拟则聚焦于制造过程中构建材料的微观组织演化;而多尺度模拟通过耦合不同类型的模型,实现了材料成形过程中的跨尺度研究。本文通过综述宏观、介观和微观以及多尺度条件下镍基高温合金增材制造过程数值模拟研究进展,分析了不同模拟方法对于解决增材制造镍基高温合金成形和控性相关问题的策略和思路。最后,针对如何推动数值模拟在增材制造镍基高温合金开发中的应用进行了展望,并指出其发展方向。
Research progress in numerical simulation on forming process of nickel-based superalloys in additive manufacturing
Additive manufacturing technology has presented unprecedented opportunities for the production of complex components made of nickel-based high-temperature alloys. However,significant competitive pressures persist in both experimental research and practical production,hindering the rapid advancement of additive manufacturing for nickel-based high-temperature alloys. In recent years,simulations at various scales have increasingly been utilized to guide the additive manufacturing and development of nickel-based high-temperature alloys. Specifically,macroscale simulations concentrate on the thermal history,forming control,residual stress distribution,and mechanical behavior during the forming process. Mesoscale simulations primarily address issues such as laser absorption during the forming process,melt flow within the molten pool,melting and solidification,defect formation,and crack prevention and control. Microscale simulations focus on the microstructural evolution of the materials during the manufacturing process. Multi-scale simulations facilitate cross-scale research in the material forming process by integrating various types of models. This article reviewed the advancements in numerical simulations of additive manufacturing processes for nickel-based high-temperature alloys under macroscopic,mesoscopic,microscopic,and multi-scale conditions. It analyzed the strategies and approaches of different simulation methods for addressing issues related to the formation and control of nickel-based high-temperature alloys in additive manufacturing. Finally,the article forecasts how to advance the application of numerical simulations in the development of nickel-based high-temperature alloys through additive manufacturing,and outlines potential directions for future development.

additive manufacturingnickel based high-temperature alloyphysical phenomenamultiscalenumerical simulation

胡勇、张文格、马好放、王泽、杨小康

展开 >

兰州理工大学省部共建有色金属先进加工与再利用国家重点实验室,兰州 730050

兰州理工大学材料科学与工程学院,兰州 730050

兰州理工大学温州泵阀工程研究院,温州 325000

增材制造 镍基高温合金 物理现象 多尺度 数值模拟

2024

中国有色金属学报
中国有色金属学会

中国有色金属学报

CSTPCD北大核心
影响因子:1.108
ISSN:1004-0609
年,卷(期):2024.34(12)