首页|基于改进RT-DETR的交通标识检测模型

基于改进RT-DETR的交通标识检测模型

Traffic Sign Detection Model Based on Improved RT-DETR

扫码查看
在自动驾驶技术与道路安全驾驶方面,交通标识的正确识别具有重要的作用.因此,针对交通标志检测中因标志类型多样、尺寸差异显著及背景信息复杂而导致的误检和漏检问题,本研究提出了一种改进RT-DETR的交通标识检测模型.首先,在内部尺度特征交互部分添加HiLo注意力机制,进一步增强网络的特征提取能力,提升其在高分辨率图像上的检测效率;其次,本研究设计了CAFMFusion特征融合机制,使得网络能够关注每个通道中不同区域的特征,使模型可以更好地捕获远程依赖关系和邻域特征相关性,提高模型的特征融合能力;最后,使用MPDIoU作为改进后模型的损失函数,实现更快的收敛速度和更准确的回归结果.实验结果表明,在TT100k-2021交通标识数据集上,改进的模型在精确率、召回率和mAP@0.5方面分别达到了90.2%、88.1%和91.6%的性能指标,相比于原始的RT-DETR模型分别提高了4.6%、5.8%和4.4%.该模型有效改善了交通标识检测效果不佳的问题,具有较大的实用价值.
The correct identification of traffic signs plays an important role in automatic driving technology and road safety driving.Therefore,to address the problems of misdetection and omission in traffic sign detection due to the variety of sign types,significant size differences and complex background information,an improved traffic sign detection model for RT-DETR was proposed in this study.Firstly,the HiLo attention mechanism was added to the Attention-based Intra-scale Feature Interaction,which further enhanced the feature extraction capability of the network and improved the detection efficiency on high-resolution images.Secondly,the CAFMFusion feature fusion mechanism was designed,which enabled the network to pay attention to the features in different regions in each channel.Based on this,the model could better capture the remote dependencies and neighborhood feature correlation,improving the feature fusion capability of the model.Finally,the MPDIoU was used as the loss function of the improved model to achieve faster convergence and more accurate regression results.The experimental results on the TT100k-2021 traffic sign dataset showed that the improved model achieves the performance with a precision value of 90.2%,recall value of 88.1%and mAP@0.5 value of 91.6%,which are 4.6%,5.8%,and 4.4%better than the original RT-DETR model respectively.The model effectively improves the problem of poor traffic sign detection and has greater practical value.

Object detectionTraffic signsRT-DETRCAFMFusion

王永康、司占军

展开 >

天津科技大学 人工智能学院,天津 300457

目标检测 交通标识 RT-DETR CAFMFusion

2024

数字印刷
中国印刷科学技术研究所

数字印刷

北大核心
ISSN:2095-9540
年,卷(期):2024.(4)