首页|基于特征重建的知识蒸馏异常检测方法

基于特征重建的知识蒸馏异常检测方法

Anomaly Detection Method Using Feature Reconstruction Based Knowledge Distillation

扫码查看
近年来,异常检测在工业生产中备受关注.传统的异常检测方法通常依赖于对样本的直接比较,往往忽略了样本之间的内在关系,导致识别异常样本的准确率不高.针对这一问题,本研究提出了一种基于特征重建的知识蒸馏异常检测方法.将师生网络结构反置之后进行知识蒸馏,避免师生网络具有相同的输入和相似的结构.通过使用特征拼接统合不同层级的特征来提高可表示性,并使用改进后的Transformer对合并后的特征进行处理和重构.实验结果表明,所提出的方法在MVTec数据集上取得了较好的性能,验证了其在异常检测任务中的有效性和可行性.本研究为提高异常检测准确率和效率提供了一种新思路.
In recent years,anomaly detection has attracted much attention in industrial production.As traditional anomaly detection methods usually rely on direct comparison of samples,they often ignore the intrinsic relationship between samples,resulting in poor accuracy in recognizing anomalous samples.To address this problem,a knowledge distillation anomaly detection method based on feature reconstruction was proposed in this study.Knowledge distillation was performed after inverting the structure of the teacher-student network to avoid the teacher-student network sharing the same inputs and similar structure.Representability was improved by using feature splicing to unify features at different levels,and the merged features were processed and reconstructed using an improved Transformer.The experimental results show that the proposed method achieves better performance on the MVTec dataset,verifying its effectiveness and feasibility in anomaly detection tasks.This study provides a new idea to improve the accuracy and efficiency of anomaly detection.

Feature ReconstructionAnomaly DetectionDistillation MechanismIndustrial Production

朱新雨、司占军、张滢雪

展开 >

天津科技大学 轻工科学与工程学院,天津 300457

天津科技大学 人工智能学院,天津 300457

特征重建 异常检测 蒸馏机制 工业生产

2024

数字印刷
中国印刷科学技术研究所

数字印刷

北大核心
ISSN:2095-9540
年,卷(期):2024.(4)