首页|基于改进YOLOv5的内河漂浮垃圾检测模型

基于改进YOLOv5的内河漂浮垃圾检测模型

Improved YOLOv5-Based Inland River Floating Garbage Detection Model

扫码查看
内河漂浮垃圾的检测对水环境保护至关重要.针对传统清理方法效率低下和小目标检测困难的问题,本研究提出了一种改进的YOLOv5目标检测模型.为了提高模型对小目标的敏感性及减少冗余信息的影响,本研究引入双层路由注意力机制,并在主干网络中嵌入该模块.此外,模型中增加了多尺度检测头,通过多尺度特征提取和检测,更全面地覆盖不同尺寸的漂浮垃圾.同时,采用Focal-EIoU损失函数来优化模型参数,提高检测的定位精度.在FloW_Img数据集上的实验结果表明,改进的YOLOv5模型的准确性和召回率更佳,mAP达到86.12%,与原始YOLOv5模型相比有显著提升,且收敛速度更快,检测效果更好.
Detection of floating garbage in inland rivers is crucial for water environmental protection,as it effectively reduces ecological damage and ensures the safety of water resources.To address the inefficiency of traditional cleanup methods and the challenges in detecting small targets,an improved YOLOv5 object detection model was proposed in this study.In order to enhance the model's sensitivity to small targets and mitigate the impact of redundant information on detection performance,a bi-level routing attention mechanism was introduced and embedded into the backbone network.Additionally,a multi-scale detection head was incorporated into the model,allowing for more comprehensive coverage of floating garbage of various sizes through multi-scale feature extraction and detection.The Focal-EIoU loss function was also employed to optimize the model parameters,improving localization accuracy.Experimental results on the publicly available FloW_Img dataset demonstrated that the improved YOLOv5 model outperforms the original YOLOv5 model in terms of precision and recall,achieving a mAP(mean average precision)of 86.12%,with significant improvements and faster convergence.

FloatinggarbageYOLOv5AttentionmechanismMulti-scale detection headFocal-EIoU

胡文浩、司占军、石金玉、杨可

展开 >

天津科技大学 人工智能学院,天津 300457

漂浮垃圾 YOLOv5 注意力机制 多尺度检测 Focal-EIoU

2024

数字印刷
中国印刷科学技术研究所

数字印刷

北大核心
ISSN:2095-9540
年,卷(期):2024.(5)