首页|迁移学习在印品表面缺陷检测中的研究

迁移学习在印品表面缺陷检测中的研究

扫码查看
为了推动印刷制造业向智能化发展,解决监督学习面临的工作量大、成本高、泛化差、标注问题等挑战,本研究提出了一种基于迁移学习的无监督印刷缺陷检测方法.这种方法可以在印刷表面进行缺陷检测,而不需要广泛标记缺陷.本研究提出的方法采用了ResNet101-SSTU模型,在印刷缺陷图像的公共数据集上,该模型不仅实现了与主流监督学习检测模型相当的性能和速度,而且成功地解决了监督学习中遇到的一些检测挑战.本研究提出的ResNet101-SSTU模型有效地消除了训练中对大量缺陷样本和标记数据的需求,为印刷行业的质量检测提供了有效的解决方案.
Research on Transfer Learning in Surface Defect Detection of Printed Products
To advance the printing manufacturing industry towards intelligence and address the challenges faced by supervised learning,such as the high workload,cost,poor generalization,and labeling issues,an unsupervised and transfer learning-based method for printing defect detection was proposed in this study.This method enabled defect detection in printed surface without the need for extensive labeled defect.The ResNet101-SSTU model was used in this study.On the public dataset of printing defect images,the ResNet101-SSTU model not only achieves comparable performance and speed to mainstream supervised learning detection models but also successfully addresses some of the detection challenges encountered in supervised learning.The proposed ResNet101-SSTU model effectively eliminates the need for extensive defect samples and labeled data in training,providing an efficient solution for quality inspection in the printing industry.

Transfer learningUnsupervisedDefect detectionPrinting

朱新雨、司占军、陈志宇

展开 >

天津科技大学轻工科学与工程学院,天津 300457

天津科技大学人工智能学院,天津 300457

迁移学习 无监督 缺陷检测 印刷

2024

数字印刷
中国印刷科学技术研究所

数字印刷

北大核心
ISSN:2095-9540
年,卷(期):2024.(6)