首页|改良药物调配法在注射用哌拉西林钠他唑巴坦钠中的应用

改良药物调配法在注射用哌拉西林钠他唑巴坦钠中的应用

扫码查看
目的 探讨改良药物调配法在注射用哌拉西林钠他唑巴坦钠中的应用效果.方法 取500支注射用哌拉西林钠他唑巴坦钠,采用两种不同的药物调配方法,对照组采用常规调配方法(按照说明书要求进行),实验组采用改良药物调配方法,包括负压溶解法、药物预处理溶解法、增加溶媒溶解法、振荡器溶解法.采用高效液相色谱-质谱技术检测不同时间点药物有效含量、不溶性微粒数量,统计药物调配时间,比较合格率.结果 实验组负压溶解法(7.13±1.22)min、药物预处理溶解法(7.02±1.34)min、增加溶媒溶解法(6.24±1.20)min、振荡器溶解法(5.16±0.69)min,药物调配时间短于对照组(11.68±2.34)min,差异有统计学意义(P<0.05),两组合格率比较差异无统计学意义(P>0.05);实验组负压溶解法[(45.45±7.67)粒·mL-1、(26.58±3.02)粒·mL-1、(8.12±1.47)粒·mL-1、(1.43±0.55)粒·mL-1、(2.19±0.75)粒·mL-1、(3.43±0.88)粒·mL-1]、药物预处理溶解法[(44.16±6.98)粒·mL-1、(25.66±3.19)粒·mL-1、(8.08±1.45)粒·mL-1、(1.36±0.48)粒·mL-1、(1.98±0.67)粒·mL-1、(3.12±0.82)粒·mL-1]、增加溶媒溶解法[(44.05±6.86)粒·mL-1、(25.47±3.23)粒·mL-1、(6.14±1.28)粒·mL-1、(1.45±0.46)粒·mL-1、(2.07±0.71)粒·mL-1、(3.25±0.83)粒·mL-1]、振荡器溶解法[(44.28±7.23)粒·mL-1、(26.05±3.11)粒·mL-1、(0.99±0.42)粒·mL-1、(1.42±0.50)粒·mL-1、(2.06±0.68)粒·mL-1、(3.48±0.85)粒·mL-1]加入溶媒后2、4、6、8、10、15 min不溶性微粒数量均较对照组[(50.20±8.19)粒·mL-1、(38.67±6.54)粒·mL-1、(26.23±4.71)粒·mL-1、(18.31±3.57)粒·mL-1、(13.22±2.34)粒·mL-1、(6.56±1.25)粒·mL-1]少(均P<0.05);实验组负压溶解法[(64.53±1.77)%、(82.42±1.13)%、(91.65±0.76)%、(99.62±0.16)%、(99.51±0.22)%、(99.17±0.30)%]、药物预处理溶解法[(65.04±1.82)%、(82.79±1.36)%、(93.68±0.73)%、(99.64±0.17)%、(99.56±0.23)%、(99.20±0.28)%]、增加溶媒溶解法[(64.78±1.69)%、(81.82±1.20)%、(98.70±0.64)%、(99.65±0.15)%、(99.54±0.26)%、(99.22±0.31)%]、振荡器溶解法[(65.11±1.75)%、(82.26±1.25)%、(99.68±0.14)%、(99.62±0.17)%、(99.50±0.21)%、(99.24±0.26)%]加入溶媒后2、4、6、8、10、15 min药物有效含量均较对照组高[(46.84±2.45)%、(55.93±2.36)%、(67.38±1.74)%、(79.47±1.25)%、(86.24±1.31)%、(98.39±0.84)%](均P<0.05).结论 相较于常规调配方法,使用改良药物调配方法在5 min左右完成注射用哌拉西林钠他唑巴坦钠的调配,可最大限度减少不溶性微粒数量,为药物有效含量提供保证,建议临床应用该配置方案时,现用现配,尽早输注,保证患者用药效果与安全.
Application of improved drug preparation method in piperacillin sodium tazobactam sodium for injection
Objective To investigate the application efficacy of modified drug formulation method in piperacillin sodium tazobactam sodium for injection.Methods Five hundred injections of piperacillin sodium tazobactam sodium were taken and two different methods of drug preparation were used.The conventional method of preparation(according to the instructions)was used in the control group and the modified methods of drug preparation including negative pressure dissolution,drug pretreatment dissolution,increased solvent dissolution and oscillator dissolution were applied in the experimental one.High performance liquid chromatography-mass spectrometry(HPLC-MS)was used to detect the effective content of the drug and the number of insoluble particles at different time points.Furthermore,drug dispensing time was counted and qualification rate compared.Results The drug preparation time was(7.13±1.22) min,(7.02±1.34) min,(6.24±1.20) min and(5.16±0.69) min for the negative pressure disso-lution method,drug pretreatment dissolution method,increasing solvent dissolution method and oscillator dissolution method in the experimental group,which was significantly shorter than that of(11.68±2.34) min in the control,demonstrating statistically signif-icant difference(P<0.05).There was no statistical significance in the comparison of the qualification rate between the two groups(P>0.05).The number of insoluble particles 2,4,6,8,10,and 15 min after addition of solvent was(45.45±7.67) microparticle·mL-1,(26.58±3.02) microparticle·mL-1,(8.12±1.47) microparticle·mL-1,(1.43±0.55) microparticle·mL-1,(2.19±0.75) microparticle·mL-1 and(3.43±0.88) microparticle·mL-1 by the negative pressure dissolution method,(44.16±6.98) microparticle·mL-1,(25.66±3.19) microparticle·mL-1,(8.08±1.45) microparticle·mL-1,(1.36±0.48) microparticle·mL-1,(1.98±0.67) microparticel·mL-1 and(3.12±0.82) microparticle·mL-1 by the drug pretreatment dissolution method,(44.05±6.86) microparticle·mL-1,(25.47±3.23) microparticle·mL-1,(6.14±1.28) microparticle·mL-1,(1.45±0.46) microparticle·mL-1,(2.07±0.71) microparticle·mL-1 and(3.25±0.83) microparticle·mL-1 by the increased solvent dissolution method,(44.28±7.23) microparticle·mL-1,(26.05±3.11) microparticle·mL-1,(0.99±0.42) microparticle·mL-1,(1.42±0.50) microparticle·mL-1,(2.06±0.68) microparticle·mL-1 and(3.48±0.85) microparticle·mL-1 by the oscillator dissolution method,which was significantly lower than that of(50.20±8.19) microparticle·mL-1,(38.67±6.54) microparticle·mL-1,(26.23±4.71) microparticle·mL-1,(18.31±3.57) microparticle·mL-1,(13.22±2.34) microparticle·mL-1 and(6.56±1.25) microparticle·mL-1 in the control(P<0.05).The effective drug content 2,4,6,8,10,and 15 min after the addition of the solvent was(64.53±1.77)%,(82.42±1.13)%,(91.65±0.76)%,(99.62±0.16)%,(99.51±0.22)%,(99.17±0.30)%by negative pressure dissolution method,(65.04±1.82)%,(82.79±1.36)%,(93.68±0.73)%,(99.64±0.17)%,(99.56±0.23)%,(99.20±0.28)%by drug pretreatment dissolution method,(64.78±1.69)%,(81.82±1.20)%,(98.70±0.64)%,(99.65±0.15)%,(99.54±0.26)%,(99.22±0.31)%by the increased solvent dissolution method,and(65.11±1.75)%,(82.26±1.25)%,(99.68±0.14)%,(99.62±0.17)%,(99.50±0.21)%,(99.24±0.26)%by the oscillator dissolu-tion method in the experimental group,which was significantly higher than that of(46.84±2.45)%,(55.93±2.36)%,(67.38±1.74)%,(79.47±1.25)%,(86.24±1.31)%,(98.39±0.84)%in the control(P<0.05).Conclusion Compared with the conventional blending method,the use of modified drug blending method to complete the blending of piperacillin sodium tazobactam sodium for injection in about 5 min can minimize the number of insoluble particles,providing a guarantee for the effective content of the drug.It is recommended a ready-to-use principle in the clinical application of this configuration scheme be followed and the infusion be conducted as soon as possible to ensure the medication effect and safety.

Piperacillin sodium tazobactam sodium for injectionNegative pressure dissolutionDrug pretreatment dissolutionIncreased solvent dissolutionOscillator dissolutionHigh-performance liquid chromatography-mass spectrometry

郭晓霞、刘美兰、邢星

展开 >

沧州市人民医院静脉用药调配中心,沧州 061000

哌拉西林钠他唑巴坦钠 负压溶解法 药物预处理溶解法 增加溶媒溶解法 振荡器溶解法 高效液相色谱-质谱技术

河北省卫生健康委2022年度医学科学研究课题

20220309

2024

中国药物应用与监测
中国人民解放军总医院

中国药物应用与监测

CSTPCD
影响因子:1.983
ISSN:1672-8157
年,卷(期):2024.21(3)
  • 9