首页|用于序列推荐的多序列注意力解耦融合方法

用于序列推荐的多序列注意力解耦融合方法

扫码查看
在推荐领域中基于注意力机制的序列推荐方法取得了良好的性能,但仍然存在着过早嵌入辅助信息的现象,导致如下问题:1)嵌入矩阵过大,增加了注意力计算的复杂性;2)不同源的异构信息被融合在同一个嵌入矩阵中进行注意力计算,使模型无法区分不同源的异构信息;3)嵌入矩阵的梯度相对固定,不能根据应用场景灵活变换。为此,提出一个用于序列推荐的多序列注意力解耦融合方法(MADF-SR)。首先,为降低计算的复杂性,MADF-SR将项目序列和辅助信息序列(如时间上下文序列和类别上下文序列)分别进行注意力计算。同时不同源的异构信息独立进行注意力计算,也使模型能够更好的区分异构信息。然后,MADF-SR将注意力计算得到的注意力矩阵根据应用场景的需要选择性的与项目序列融合,使得嵌入矩阵可以根据所选择的辅助信息序列数量的变化而自适应地改变梯度。在4个真实数据集上的实验结果表明,MADF-SR在评价指标NDCG@10上的表现明显优于基线模型。
Multi-sequence Attention Decoupling Fusion Method for Sequential Recommendation
Sequential recommendation methods based on the attention mechanism in the recom-mendation domain have achieved good performance,but there still exists the phenomenon of premature embedding of auxiliary information,which leads to the following problems:1)the embedding matrix is too large,which increases the complexity of the attention computation;2)the heterogeneous information from different sources is fused into the same embedding matrix for the attention computation,which makes the model unable to distinguish the heterogeneous infor-mation from different sources;3)the embedding matrix's gradient is relatively fixed and cannot be flexibly transformed according to the application scenario.To this end,a multiple-sequence attention decoupling fusion method for sequence recommendation(MADF-SR)is proposed.First,to reduce the computational complexity,MADF-SR performs the attention computation of item sequences and auxiliary information sequences(e.g.,time-context sequences and category-context sequences)separately.Also the heterogeneous information from different sources is subjected to attention computation independently,which also enables the model to better distinguish hetero-geneous information.Then,MADF-SR selectively fuses the attention matrix obtained from the attention computa-tion with the item sequences according to the needs of the application scenarios,so that the embedding matrix can adaptively change the gradient according to the changes in the number of selected auxiliary information sequences.Experimental results on four real datasets show that MADF-SR performs significantly better than the baseline model on the evaluation metric NDCG@10.

sequence recommendationmultiple sequencesdecoupling fusionattention mechanism

高澳华、秦继伟

展开 >

新疆大学计算机科学与技术学院,新疆 乌鲁木齐 830046

自治区信号检测与处理重点实验室,新疆 乌鲁木齐 830046

序列推荐 多序列方法 解藕融合 注意力机制

自治区重大科技专项资助项目

2020A03001

2023

中国有线电视
西安交通大学

中国有线电视

影响因子:0.287
ISSN:1007-7022
年,卷(期):2023.(12)
  • 12