首页|一种面向学科领域的知识表示算法

一种面向学科领域的知识表示算法

扫码查看
随着教育信息化的发展,构建高质量的学科知识图谱尤为重要.针对目前教育领域知识图谱表示学习模型只利用了实体和关系间的距离信息,忽略了它们之间的语义信息导致知识表示不准确的问题.提出一种知识表示学习增强模型.首先,该模型采用关系矩阵来识别实体间的相关性,并使用关系向量描述子空间中实体间的关系.其次,在向量空间将头向量和尾向量投影至关系向量来增强关系与实体间的交互作用,加强实体和关系的语义关系.最后,在2个公共数据集和自建学科领域数据集上进行的链接预测实验表明,相比于基线模型,该模型在Hit@1、Hit@3、Hit@10及MRR上均取得较大提升.
A Knowledge Representation Algorithm for Disciplinary Domains
With the development of education informatization,it is especially important to con-struct high-quality subject knowledge graphs.Aiming at the current knowledge graph represen-tation learning model in the field of education only utilizes the distance information between en-tities and relations,and ignores the semantic information between them resulting in inaccurate knowledge representation.A knowledge representation learning enhancement model is pro-posed.First,the model employs a relationship matrix to identify the correlations between enti-ties and uses relationship vectors to describe the relationships between entities in the subspace.Second,the head and tail vectors are projected to the relation vectors in the vector space to en-hance the interaction between relations and entities,and to strengthen the semantic relationship between entities and relations.Finally,link prediction experiments on 2 public datasets and self-constructed subject area datasets show that the model achieves large improvements in Hit@1,Hit@3,Hit@10 and MRR compared to the baseline model.

knowledge graphsrepresentation learninglink prediction

杜宏亮、秦继伟

展开 >

新疆大学计算机科学与技术学院,新疆 乌鲁木齐 830046

自治区信号检测与处理重点实验室,新疆 乌鲁木齐 830046

知识图谱 表示学习 链接预测

新疆维吾尔自治区重大科技专项自治区本科教育教学改革研究项目

2020A03001XJGX-PTJG-202201

2023

中国有线电视
西安交通大学

中国有线电视

影响因子:0.287
ISSN:1007-7022
年,卷(期):2023.(12)
  • 5