首页|多模态弱监督学习在肝癌图像生成与分割中的应用

多模态弱监督学习在肝癌图像生成与分割中的应用

扫码查看
针对MRI软组织对比度高但不是胸部成像护理标准,导致难以获得足够多专家标注的MRI数据的问题,通常将CT转换成MRI图像。由于难以获取对应模态的CT和MRI图像,结合生成式对抗网络的结构特点,提出CSCGAN生成网络模型。该模型以CycleGAN作为框架,由于CycleGAN可能存在模式坍塌问题,同时StyleGAN2能够控制合成图像的样式和特征的细节,实现高分辨率图像的合成,因此将其融入到CycleGAN中,重构了网络的生成器。同时为了减少外部干扰,引入了噪声模块,另外为了防止肿瘤在转换时丢失,修改了网络的鉴别器结构,并加入了混合注意力机制。实验结果显示,与文中其他方法相比,该模型生成的样本图像在Dice相似系数、Hausdorff距离、体积比和平均交并比各项指标上均有所提升,该方法有效实现了肝脏肿瘤病变图像的模态转换,生成的数据能够提高分割网络的准确性。
Application of multimodal weakly-supervised learning in image synthesis and segmentation of liver cancer
Although it has high resolution for soft tissues,magnetic resonance imaging(MRI)is not the standard for chest imaging,which results in an insufficient amount of expert-annotated MRI data.Therefore,CT image is usually converted into MRI image.To overcome the difficulty of obtaining the corresponding modal CT and MRI images,a CSCGAN model with CycleGAN as the framework is proposed based on the structural characteristics of generative adversarial networks.Considering the possibility of mode collapse in CycleGAN,StyleGan2 which can control the style and feature details of the synthetic image and realize the synthesis of high-resolution images is integrated into CycleGAN for reconstructing the generator.A noise module is introduced to reduce external interference.In addition,in order to prevent the loss of tumors during conversion,the discriminator structure of the network is modified,and a mixed attention mechanism is added.Experimental results show that compared with the images generated by other methods,those generated by the proposed model are improved in Dice similarity coefficient,Hausdorff distance,volume ratio and mean intersection over union,indicating that the proposed method can effectively realize the mode conversion of liver tumor images,and that the generated data can improve the segmentation accuracy.

medical image processingmode conversionliver tumor segmentationgenerative adversarial networkmixed

潘依乐、高永彬

展开 >

上海工程技术大学电子电气工程学院,上海 201620

医学图像处理 模态转换 肝脏肿瘤分割 生成式对抗网络 混合注意力机制

国家工业信息部-卫生健康委5G医疗示范项目广州市科技计划广东省重点研发计划

2022060100932020B010165004

2024

中国医学物理学杂志
南方医科大学,中国医学物理学会

中国医学物理学杂志

CSTPCD
影响因子:0.483
ISSN:1005-202X
年,卷(期):2024.41(1)
  • 32