首页|融合改进Transformer和卷积通道注意力模块的U-Net用于双心室分割

融合改进Transformer和卷积通道注意力模块的U-Net用于双心室分割

扫码查看
设计一种融合改进Transformer和卷积通道注意力模块的U-Net用于MRI图像双心室分割。通过在U-Net的高层卷积部分基础融合改进Transformer,有效增强全局特征信息的提取能力以应对右心室复杂的形态变化造成低分割性能的难题。改进的Transformer在自注意力模块部分中加入固定窗口注意力进行位置定位,随后对其输出特征图进行聚合以缩小特征图尺寸;同时通过改进多层感知器来加深网络深度以提高网络学习能力。为解决组织边缘模糊造成的分割性能不理想问题,引入特征聚合模块进行多层次底层特征的融合,利用卷积通道注意力模块对底层特征进行重标定,实现自适应地学习特征权重。此外,针对编解码结构中通道衰减造成特征丢失导致的低分割性能,网络集成一个即插即用的特征增强模块,保证空间信息同时增加有用通道信息的比重。在ACDC数据集对本文算法进行测试,结果表明本文方法对左右心室的分割精度均优于近年其他算法,尤其是右心室分割结果,相比于其他方法,DSC系数提高至少2。83%,证明本文方法对双心室分割的有效性。
Biventricular segmentation using U-Net incorporating improved Transformer and convolutional channel attention module
A U-Net incorporating improved Transformer and convolutional channel attention module is designed for biventricular segmentation in MRI image.By replacing the high-level convolution of U-Net with the improved Transformer,the global feature information can be effectively extracted to cope with the challenge of poor segmentation performance due to the complex morphological variation of the right ventricle.The improved Transformer incorporates a fixed window attention for position localization in the self-attention module,and aggregates the output feature map for reducing the feature map size;and the network learning capability is improved by increasing network depth through the adjustment of multilayer perceptron.To solve the problem of unsatisfactory segmentation performance caused by blurred tissue edges,a feature aggregation module is used for the fusion of multi-level underlying features,and a convolutional channel attention module is adopted to rescale the underlying features to achieve adaptive learning of feature weights.In addition,a plug-and-play feature enhancement module is integrated to improve the segmentation performance which is affected by feature loss due to channel decay in the codec structure,which guarantees the spatial information while increasing the proportion of useful channel information.The test on the ACDC dataset shows that the proposed method has higher biventricular segmentation accuracy,especially for the right ventricle segmentation.Compared with other methods,the proposed method improves the DSC coefficient by at least 2.83%,proving its effectiveness in biventricular segmentation.

biventricular segmentationimage processingTransformerattention mechanismfeature extraction

陈沐萱、袁金丽、郭志涛、卢成钢

展开 >

河北工业大学电子信息工程学院,天津 300401

双心室分割 图像处理 Transformer 注意力机制 特征提取

河北省教育厅重点项目

ZD2022115

2024

中国医学物理学杂志
南方医科大学,中国医学物理学会

中国医学物理学杂志

CSTPCD
影响因子:0.483
ISSN:1005-202X
年,卷(期):2024.41(1)
  • 29